Метаболизм глицина

  • Авторы
  • Файлы
  • Литература

Иванова А.Л. 1 Ивашев М.Н. 1 Сергиенко А.В. 1 Савенко И.А. 1 1 Аптека «Профессорская» 274 KB 1. Алхазова Р.Т. Коррекция холодового спазма кровеносных сосудов при резорбтивном и местном действии нестероидных противовоспалительных средств, анестетиков и спазмолитиков миотропного действия / Р.Т. Алхазова // Известия Дагестанского государственного педагогического университета. Естественные и точные науки. – 2013. – №3 (24). – С. 40-45. 2. Бондаренко Д.А. Моделирование патологических состояний кожи у крыс и мышей / Д.А. Бондаренко // Цитокины и воспаление. – 2010. – Т.9. – № 4. – С. 28-31. 3. Влияние дибикора и таурина на мозговой кровоток в постишемическом периоде / Абдулмаджид Али Кулейб // Фармация. – 2009. – №1. – С. 45-47. 4. Клиническая эффективность растительного антиоксиданта «сосудистый доктор» у больных с сердечно-сосудистой патологией / В.С. Федоров // Фармация. – 2005. – №5. – С.43-45. 5. Кодониди И.П. Компьютерное прогнозирование биомолекул / И.П. Кодониди // Международный журнал экспериментального образования. – 2013. – №11-1. – С. 153-154. 6. Кручинина Л.Н. Изучение эффективности лечения больных язвенной болезнью желудка и двенадцатиперстной кишки в условиях санатoрия – профилактория / Л.Н. Кручинина, М.Н. Ивашев // Здравоохранение Российской Федерации. – 1981. – №4. – С. 20-22. 7. Пужалин А.Н. Воспроизводимость экспериментальной модели сахарного диабета I типа / А.Н. Пужалин // Аллергология и иммунология. – 2007. – Т.8 – №1. – С. 214. 8. Омаров Ш.М. Клиническое применение маточного молочка / Ш.М. Омаров, Б.Н. Орлов, З.Ш. Магомедова, З.М. Омарова // Пчеловодство. – 2011. – №8. – С. 58-60. 9. Омаров Ш.М. Прополисотерапия в дерматологии // Пчеловодство. – 2012. – №4. – С. 56-58. 10. Омаров Ш.М. Физиологические свойства пчелиного яда и его применение / Ш.М. Омаров, З.Ш. Магомедова, З.М. Омарова // Пчеловодство. – 2012. – №7. – С. 58-59. 11. Омаров Ш.М. Апитерапия: продукты пчеловодства в мире медицины // Международный журнал прикладных и фундаментальных исследований. – 2012. – №9. – С. 36. 12. Орлов Б.Н. Очерки практической апифитокосметологии (пчелы и лекарственные растения на службе здоровья и красоты) / Б.Н. Орлов, Ш.М. Омаров, Н.В. Корнева // Международный журнал экспериментального образования. – 2012. – №1. – С. 98-99. 13. Седова Э.М. Место миокардиального цитопротектора предуктала МВ в лечении хронической сердечной недостаточности у женщин в перименопаузе // Вестник Волгоградского государственного медицинского университета. – 2008. – №1. – С.34-35. 14. Седова Э.М. Экспериментально-клиническое обоснование применения предуктала МВ и дибикора у больных женщин хронической сердечной недостаточностью в перименопаузе: дис. … канд. мед. наук. ГОУВПО «Волгоградский государственный медицинский университет». – Волгоград, 2008. 15. Сулейманов С.Ш. Инструкции по применению лекарственных препаратов: закон новый, проблемы прежние / С.Ш. Сулейманов, Я.А. Шамина // Проблемы стандартизации в здравоохранении. – 2011. – №11-12. – С.13-16. 16. Целенаправленный поиск и фармакологическая активность ГАМК-позитивных соединений / И.П. Кодониди, А.В. Арльт, Э.Т. Оганесян, М.Н. Ивашев // Государственное образовательное учреждение высшего профессионального образования «Пятигорская гос. фармацевтическая акад. Федерального агентства по здравоохранению и социальному развитию», Кафедры органической химии и фармакологии. – Пятигорск, 2011. 17. Циколия Э.М. Клиническая фармакология линекса // Международный журнал прикладных и фундаментальных исследований. – 2013. – №8-3. – С. 106-107.

Цель исследования. Установить основные пути превращения в организме человека лекарственного средства глицин.

Материал и методы исследования

Анализ литературных данных и результатов практического применения, представленных в клинических исследованиях.

Результаты исследования их обсуждение

Аминоуксусная кислота (глицин) – это простейшая алифатическая аминокислота, единственная протеиногенная аминокислота, не имеющая оптических изомеров. Получают аминоуксусную кислоту при химической реакции аммиака и хлоруксусной кислоты. Аминоуксусная кислота вырабатывается из хрящевой ткани крупного рогатого скота. В промышленных масштабах глицин получают гидролизом соевого белка. Аминоуксусная кислота метаболизируется до воды и углекислого газа, однако, глицин участвует в метаболизме органических соединений клеток организма.

Аминоуксусная кислота вместе с цистеином и глутаминовой кислотой участвует в синтезе глутатиона. Значение глутатиона в клетке определяется его антиоксидантными свойствами. Фактически глутатион защищает клетку от таких токсичных агентов, как свободные радикалы, и активно участвует в регулировании окислительно-восстановительного потенциала клетки. В антиоксидантную систему глутатиона входят три глутатионзависимых фермента: глутатионпероксидаза, глутатионредуктаза и глутатионтрансфераза. Глутатион участвует в синтезе лейкотриенов: главная антиоксидантная роль глутатиона заключается в защите иммунных клеток, в первую очередь лимфоцитов. Этот комплекс также важен в качестве гидрофильной молекулы, которая присоединяется ферментами печени к гидрофобным токсическим веществам в процессе их биотрансформации с целью выведения из организма, как правило, через желчь. Синтезируется глутатион в каждой клетке, но больше всего в гепатоцитах. Печень обеспечивает около 90% всего циркулирующего глутатиона при физиологических условиях. Глутатион обеспечивает выработку основных детоксикационных ферментов и способствует регенерации самих клеток печени. Глутатион — соединение, защищающее сульфгидрильные группы гемоглобина и мембрану эритроцитов от окислителей.

Аминоуксусная кислота содержится в большом количестве в кератинах и непосредственно участвует в его синтезе. Большое содержание глицина зарегистрировано в белке коллагена, содержащегося в коже, хрящах и костях. Соединительнотканный белок эластин тоже содержит большой процент (до 50 и более) глицина. Клетки эпидермиса содержат структурный матрикс кератина, который создаёт внешний водоупорный слой кожи и, совместно с коллагеном и эластином, придаёт коже упругость и прочность.

Из аминоуксусной и янтарной кислот в клетках синтезируются порфирины. Наиболее известные биологически активные соединения на основе порфиринов в организме: гемоглобин, миоглобин, цитохромы, каталазы и др. Аминоуксусная кислота для вхождения в реакцию образования порфиринов модулируется (активируется) пиридоксальфосфатом (активированная форма пиридоксина, витамина – В-6).

В синтезе пуринового ядра в пуриновых основаниях принимают участие аминокислоты глицин, аспарагин и др. Доказано, что глицин непосредственно участвует в синтезе инозиновой кислоты, которая является предшественником пуриновых нуклеотидов в составе нуклеиновых кислот. Пуриновые нуклеотиды образуются в большинстве клеток, но главным образом в печени и затем распространяются с током крови по всему организму. Пуриновые нуклеотиды являются составной частью нуклеиновых кислот, макроэргических соединений, коферментов. Достаточный синтез пуриновых оснований лежит в основе оптимального уровня обновления нуклеиновых кислот и белков в организме, стабильности энергетического метаболизма. Ингибирование синтеза пуриновых нуклеотидов приводит к замедлению роста тканей. При нарушении распада пуриновых нуклеотидов накапливаются продукты их метаболизма, в первую очередь мочевая кислота.

Участие глицина в химических реакциях превращения в организме обеспечивает целый комплекс дальнейшего биологического взаимодействия в органах и тканях. Благодаря своим антиокислительным, антитоксичным и антидепрессивным свойствам, аминоуксусная кислота входит в состав многих лекарственных препаратов для: нормализации сна и облегчения засыпания; улучшения настроения; повышения умственной работоспособности; минимализации токсического действия препаратов и алкоголя, негативно влияющих на работу центральной нервной системы; оказания успокоительного действия; снижения эмоционально-психологического напряжении и агрессивности; улучшения памяти и внимания; снижения гиперактивности; восстановления и блеска волос; замедления дегенерации мышечной ткани (является источником креатина); уменьшения действия противосудорожных препаратов; препятствия эпилептических судорог и др. Доказано, что аминоуксусная кислота эффективна также в качестве профилактического препарата после ишемического инфаркта и черепно-мозговых травм, а также при лечении желудочно-кишечных заболеваний. Зарегистрировано влияние курсового применения глицина на уровень сахара плазмы крови.

Аминоуксусная кислота входит в состав многих косметологических средств, в качестве увлажняющего компонента: замедляет преждевременное старение кожи, защищает клеточные мембраны от разрушительного воздействия свободных радикалов и способствует улучшению обменных процессы в клетках. Также применяется в качестве загустителя. Глутатион применяют в качестве ингибитора меланина в косметической промышленности. В таких странах, как Япония и Филиппины, этот продукт продается в виде мыла для отбеливания кожи. Аминоуксусную кислоту также добавляют в процессе изготовления мыл взамен шелковым волокнам. Он придает гладкость, блеск и кремовый цвет, образует пену, не оказывает раздражающего действия.

Выводы

Аминоуксусная кислота участвует в процессах метаболизма белковых соединений в организме человека и этим обеспечивает фармакологический эффект при применении в профилактике и терапии заболеваний.

Библиографическая ссылка

Иванова А.Л., Ивашев М.Н., Сергиенко А.В., Савенко И.А. МЕТАБОЛИЗМ ПРЕПАРАТА ГЛИЦИН // Международный журнал экспериментального образования. – 2015. – № 2-1. – С. 37-39;
URL: http://expeducation.ru/ru/article/view?id=6407 (дата обращения: 26.07.2020).Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» (Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления) «Современные проблемы науки и образования» список ВАК ИФ РИНЦ = 0.791 «Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074 «Современные наукоемкие технологии» список ВАК ИФ РИНЦ = 0.909 «Успехи современного естествознания» список ВАК ИФ РИНЦ = 0.736 «Международный журнал прикладных и фундаментальных исследований» ИФ РИНЦ = 0.570 «Международный журнал экспериментального образования» ИФ РИНЦ = 0.431 «Научное Обозрение. Биологические Науки» ИФ РИНЦ = 0.303 «Научное Обозрение. Медицинские Науки» ИФ РИНЦ = 0.380 «Научное Обозрение. Экономические Науки» ИФ РИНЦ = 0.600 «Научное Обозрение. Педагогические Науки» ИФ РИНЦ = 0.308 «European journal of natural history» ИФ РИНЦ = 1.369 Издание научной и учебно-методической литературы ISBN РИНЦ DOI

Глутамат — это единственный медиатор, который оказывает только возбуждение. При избытке глутамата возникает судорожная готовность мозга, которая может перетечь в эпилепсию. Он взаимодействует с NMDA-рецепторами. Он токсичен для гиппокампа, в связи с чем ухудшается память. В этот момент погибает большое количество нейронов, и поэтому нужно действовать ещё и нейропротекторами, а не только снимать судороги. Таких препаратов очень мало.

Глицин — это медиатор, вызывающий только торможение. Глутамат -> ГАМК (возбудитель -> тормозитель). Опять возникает судорожная готовность мозга, которая может привести к эпилепсии. С глицином в клетку входит избыток хлора, из-за чего происходит гиперполяризация. Глицин вызывает торможение в спинном мозге и немного в головном. То есть он в основном действует на мотонейроны и затормаживает их.

При входе хлора возникает гиперполяризация. Мефенезин вводят, из которого образуется мепробат, а из него бензодиазепины (их всегда совершенствуют, увеличивают их свойства. Они им побочный эффект и привыкание. Они оказывают успокаивающее действие (явл транквилизаторами)). На ГАМК-рецепторе есть участок, который продливает действие ГАМК, и на нем находятся БД. Эндозепины вырабатываются в организме и делают нас более спокойными. Оппиатная система мозга, которая препятствует болевой чувствительности. Ноуицептивная система и опиатная система (эндорфины вырабатываются в гипоталамогипофизарной системе и снижают болевую чувствительность, и энкофалины вырабатываются в среднем мозге и также снижают болевую чувствительность). Опиатная система приспособлена к тому, чтобы взаимодействовать с морфием. В мозге вырабатывается морфий, и к нему есть рецепторы. Он нужен для того, чтобы также снижать болевую чувствительность.

Бордопиратами можно снять эпилептический статус, но они приводят к резкому снижению интеллектуальной деятельности.

У нас в организме синтезируется 23 аминокислоты. В мозге также содержатся аминокислоты, первая их функция – они принимают участие в синтезе белка, но аминокислоты, которые содержатся в головном и спинном мозге выполняют медиаторную функцию. И 75% аминокислот в ЦНС приходится на глутомат, глицин, аспаразиновую кислоту (ее в программе нет) и гаммааминомаслянную кислоту.

Что касается глицина, его функцию мы в прошлый раз выяснили – это мощный тормозный медиатор, он обеспечивает как прямое торможение в системе реципропной иннервации мышц антагонистов и в системе возвратного торможения с участием клеток РЕНШОУ. За счет чего возникает торможение с помощью глицина? — На мембране возникает процесс гиперполяризации в результате того, что открывается большее количество каналов (повышается проницаемость мембраны) для ионов калия. Глицин синтезируется из глюкозы и не только в нервных клетках, но и во многих клетках организма, он проходит через гематоэнцефалический барьер (ГЕБ). Рецепторы к глицину есть не только в постсинаптический мембране нервной клетки, но и в других участках мембраны нейрона, и это обеспечивает лечебное действие того глицина, который применяется в фармакологии, т. е. он не включается в синаптическую передачу, а влияет на рецепторы в нервной клетке внесинаптические.


Глутомат – это только возбуждающий медиатор, он синтезируется из глюкозы только в клетках нервной системы. Он напротив вызывает деполяризацию мембраны нейронов, за счет повышения ее проницаемости для ионов натрия. Сконцентрированы нейроны, синтезирующие глутомат в основном в лобной коре. Если 3-4 года назад он рассматривался только как медиатор, то сейчас говорят о том, что он принимает участие в синтезе белка, т.е. он включается в метоболические процессы в нервных клетках.. К нему открыты NMDA – рецепторы. Когда глутомат взаимодействует с ними, происходит деполяризация мембраны, которая приводит к возникновению потенциала действия, а значит возбуждению нервной клетки. После открытия NMDA- рецепторов стало понятно, почему барбитураты оказывают тормозное влияние на эпилептические приступы. Оказалось на рецепторе к глютонату есть участок который взаимодействует с барбитуратами. Если есть вещество, которое садится на этот рецептор, глутомату не с чем взаимодействовать и поэтому возникает торможение. К сожалению глутомат – необходимый медиатор при взаимодействии нервных клеток для формирования памяти, он обязательно включается в механизмы формирования памяти. Особенно опасно применять барбитураты для лечения маленьких детей, у которых страдает память, обучение. Хотя нет еще таких препаратов, которые так быстро снимали эпилептический приступ.


Один фермент, который взаимодействует с глутоматом, одна ступенька от глутомата, и глутомат превращается в ГАМК. Гаммааминомаслянная кислота – это тоже тормозный медиатор, она синтезируется только в мозге, содержится в коре, в мозжечке, в черной субстанции. Это мощная тормозная система головного мозга (глицин – спинной мозг). Повышенная активность глюконатэргической системы, или усиленный выброс глуконата приводит к судорожной готовности мозга, которая может спровоцировать приступ эпилепсии. Недостаток гамкэргической системы приводит к тем же последствиям, к повышенной судорожной готовности мозга. Большая часть препаратов, которыми лечится эпилепсия, направлены на то, чтобы усилить секрецию ГАМК или затормозить разрушение ГАМК.

Рисуем нервную клетку, мембрану, рецептор к ГАМК.

Когда ГАМК взаимодействует с этим рецептором, каков механизм действия ГАМК?

ГАМК повышает проницаемость клеточной мембраны для хлора, хлор входит в клетку и увеличивается на мембране мембранный потенциал, на мембране возникает гиперполяризация в виде ТПСП, а это повышает порог этой клетки, клетка затормаживается к ней сигналы подходят, но она возбудиться не может. Можно менять проницаемость для натрия, для кальция, для хлора, вот ГАМК меняет проницаемость мембраны клетки к хлору. ГАМК – это мощный тормозитель. На основе ГАМК был синтезирован препарат мефенезин его применяли при операции для расслабления мускулатуры. Затем его решили усовершенствовать, задача была та же – повысить расслабление скелетной мускулатуры, и синтезировали мекробамат, когда его стали применять оказалось, что он оказывает к тому же успокаивающее влияние на больного.

Тогда стали работать с этим препаратом, искать различные его формы и разработали – бензодиазепины – транквелизаторы, которые гасят чувство страха, снимают эмоциональное напряжение.

Почему они оказывают свое действие? – значит к этим веществам есть рецепторы. Оказалось что рецепторы к бензодиазепину находятся на рецепторе к ГАМК-у (он взаимодействует с участком рецепторов к ГАМК-у) Явление успокоения возникает в результате того, что бензодиазепин задерживает ГАМК в синаптической щели, т. е. он не разрушается и не захватывается обратно, бензодиазипин удлиняет срок действия Гамк-а в синаптической щели. Природные легамды, вещества которые обладают успокаивающим действием на человека, пока они не найдены. Но зато был найден эндозипин – к нему тоже есть участок на ГАМК – рецепторе, но при этом взаимодействии возникает чувство страха, чувство паники. Все зависит от того что возьмет верх эндозепины или бензодиазепины, которых мы еще не знаем, или те бензодиазепины, которые мы принимаем в виде таблеток, все они борются за рецепторы. Оказалось, что у нас в мозге синтезируется карболины, которые вызывают чувство паники.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *