Липид

§ 6. Липиды. АТФ



Вопрос внутри параграфа: Почему жиры – важный компонент питания?

Жиры выполняют множество функции, основные из них это структурная (или строительная) и энергетическая. Они содержат важнейшие компоненты – жирные кислоты, которые необходимы для обмена веществ в клетках. Жиры являются растворителем для некоторых витаминов.

Стр. 33. Вопросы и задания после §

1. Какие химические соединения относятся к липидам? Каковы их свойства?

Липиды (от греч. lipos – жир) – органические соединения, основным компонентом которых являются жирные кислоты. В отличие от белков, углеводов, нуклеиновых кислот, липиды не являются полимерными молекулами, их не относят к макромолекулам. Они мало растворимы в воде, но хорошо растворяются в эфирах, бензине, хлороформе и некоторых других растворителях. В состав липидов входят глицерин, а кислоты входящие в состав могут быть насыщенные жирные кислоты, или ненасыщенные. Выделяют простые и сложные липиды. Молекулы простых липидов состоят из остатков жирынх кислот и спиртов. К этой группе относят жиры. Они запасаются в виде капелек в цитоплазме клеток и служат ценным источником энергии. При их расщеплении выделяется в 2 раза больше энергии, чем при расщеплении такого же количества глюкозы. Запасы жира в подкожно-жировой клетчатке млекопитающих позволяет переживать неблагоприятные условия, связанные с недостатком пищи и воды. Особенно данное свойство жиров, накапливаться в организме и при расщеплении выделять внутриклеточную воду, необходимую для процессов обмена веществ в клетке, необходимо для пустынных животных.

2. Что представляют собой жиры? какова их роль в клетке и организме в целом?

Жиры – это вид простых липидов, которые в виде капель находятся в цитоплазме клеток. Главная их роль – это энергетическая, кроме этого, теплоизоляционная – поскольку жировая ткань плохо проводит тепло, защищая организм от переохлаждения, и защита внутренних органов от повреждений при ушибах и механических повреждений.

3. Что помогает животным пустыни долгое время обходиться без воды? Ответ поясните.

Пустынные животные запасают в тканях жиры, так как окисляясь жиры расщепляются до воды и энергии, это обеспечивает животных максимальную выносливость, и способность обходиться долгое время без воды и пищи. Так, например, в горбах верблюда находятся именно жир, который расходуется организмом на внутриклеточные процессы обмена веществ, это позволяет долго обходится верблюду без воды, так как воды выделяется при расщеплении жира из горбов.

4. Почему АТФ называют аккумулятором энергии?

АТФ – это аденозинтрифосфорная кислота. В данной химической молекуле запасается энергия в виде химических связей, при расщеплении данной молекулы высвобождается энергия. По строению АТФ похожа на нуклеотид, в нее входит азотистое основание аденин, углевод рибоза, и три остатка фосфорной кислоты. Остатки фосфорной кислоты связаны между собой особыми связями – макроэргическими, данные связи обладают большим запасом энергии. При разрыве данной связи высвобождается 38 кДж энергии, которая используется организмом для всех видов деятельности.

5. Объясните, как происходит освобождение энергии АТФ.

Макроэргические связи в молекуле АТФ богаты энергией, непрочны, легко разрываются. При разрыве связи высвобождается энергия, порциями, при отщеплении каждого остатка. При отщеплении одного остатка фосфорной кислоты АТФ превращается в АДФ (аденозиндифосфат), при отщеплении двух остатков АТФ превращается в АМФ (аденозинмонофосат). Запас АТФ в клетке ограничен, и должен постоянно пополнятся за счет процессов дыхания, при которых происходит образования АТФ из АМФ и АДФ.

6. Объясните значение термина «макроэргические связи».

Макроэргические связи – («макро» – много, «эргические» – энергия) это высокоэнергетические связи, при разрушении которых выделяется энергия. Это тип ковалентного взаимодействия между атомами.

Белки, липиды, углеводы, нуклеиновые кислоты (обмен и сравнение)

Белки, жиры и углеводы служат для организма строительным материалом и источником энергии.
Белки, полисахара и нуклеиновые кислоты – полимеры, состоят из мономеров (соответственно аминокислот, моносахаров и нуклеотидов).
БЕЛКИ – главный строительный материал, составляют 50% от сухой массы организма, входят в состав органоидов, мембран и цитоплазмы клеток. Функции: каталитическая (ускоряют реакции), транспортная, двигательная, защитная и др.
Белки в организме не запасаются, избыток белков превращается в жиры или углеводы. Сами белки из углеводов и жиров синтезировать нельзя, потому что в жирах и углеводах нет азота. Недостаток белков в пище опасен, особенно для детей и подростков.
При окислении белков получается углекислый газ, вода и аммиак. Аммиак током крови доносится до печени и там превращается в мочевину, которая выделяется с мочой и потом.
УГЛЕВОДЫ делятся на моносахара, дисахара и полисахара.
Моносахара (растворяются в воде и имеют сладкий вкус):

  • рибоза (входит в состав АТФ, РНК),
  • дезоксирибоза (входит в состав ДНК),
  • глюкоза (главный источник энергии, образуется при фотосинтезе, при дыхании окисляется до воды и углекислого газа).

Резервом, с помощью которого концентрация глюкозы в крови поддерживается на постоянном уровне, служит запас гликогена в печени. Избыток углеводов в организме превращается в жиры.
Полисахара (в воде не растворяются, вкуса не имеют). Выполняют строительную и запасающую функции:

  • крахмал – запасной углевод у растений,
  • гликоген – запасной углевод у животных и грибов,
  • целлюлоза – компонент клеточной стенки растений.

ЛИПИДЫ – это группа веществ, не растворяющихся в воде. К ним относятся жиры, фосфолипиды (входят в состав плазматической мембраны – строительная функция) и стероиды (половые и корковые гормоны – регуляторная функция).
ЖИРЫ – состоят из глицерина и жирных кислот. Функция – запас энергии. При окислении жира выделяется в два раза больше энергии, чем при окислении грамма белка или углевода, а так же вода и углекислый газ.
Жиры запасаются в подкожной жировой клетчатке и в прокладках между органами. Кроме запаса энергии, жировые ткани выполняют функции теплоизоляции, запаса воды и механической защиты.
Жиры в организме могут образовываться из белков и углеводов.
НУКЛЕИНОВЫЕ КИСЛОТЫ участвуют в хранении и реализации наследственной информации.

  • ДНК входит в состав хромосом,
  • иРНК переносит информацию из ядра к рибосоме,
  • тРНК переносит аминокислоты к рибосоме,
  • рРНК входит в состав рибосом.

Еще можно почитать

БОЛЬШЕ ИНФОРМАЦИИ: Липиды, Ферментативная (каталитическая) функция белков, Функции белков с примерами, Углеводы
ЗАДАНИЯ ЧАСТИ 2: Липиды, углеводы, Ожирение

Тесты и задания

Выберите один, наиболее правильный вариант. Клетчатка, содержащаяся в сырых овощах и фруктах, употребляемых в пищу человеком, улучшает
1) пищеварение в желудке
2) расщепление углеводов
3) моторную функцию кишечника
4) всасывание питательных веществ в кровь

Ответ

Выберите один, наиболее правильный вариант. В организме человека НЕ происходит превращение
1) белков в жиры
2) углеводов в белки
3) углеводов в жиры
4) органических веществ в неорганические

Ответ

Выберите один, наиболее правильный вариант. Только белки выполняют функцию
1) защитную
2) энергетическую
3) запасающую
4) двигательную

Ответ

БЕЛКИ
Выберите три варианта. Какие продукты питания характеризуются большим содержанием белков?
1) сметана
2) творог
3) сыр
4) картофель
5) хлеб
6) рыба

Ответ

БЕЛКИ — ЛИПИДЫ
Установите соответствие между характеристикой и веществом, к которому она относится: 1) белки, 2) жиры. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) состоят из молекул жирных кислот и глицерина
Б) состоят из остатков молекул аминокислот
В) защищают организм от переохлаждения
Г) защищают организм от бактерий и вирусов
Д) являются полимерами
Е) при окислении 1 грамма дают 38,9 кДж

Ответ

БЕЛКИ — УГЛЕВОДЫ
Установите соответствие между функциями и свойствами органических веществ в клетке и их видами: 1) углеводы, 2) белки. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) выполняют транспортную функцию
Б) являются запасным веществом в клетке
В) состоят из мономеров глюкозы
Г) выполняют ферментативную функцию
Д) обеспечивают активный транспорт через мембраны
Е) образуют клеточную стенку

Ответ

Установите соответствие между строение и функцией вещества и его видом: 1) Гемоглобин, 2) Гликоген. Запишите цифры 1 и 2 в правильном порядке.
А) Молекула сильно разветвлена
Б) Имеет четвертичную структуру
В) Откладывается в запас в печени
Г) Мономерами являются аминокислоты
Д) Используется для поддержания уровня кислорода

Ответ

Установите соответствие между питательными веществами и продуктами питания, в которых они содержатся: 1) белки, 2) углеводы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) хлеб
Б) мясо
В) картофель
Г) творог
Д) сыр
Е) сахар

Ответ

БЕЛКИ — НК
Установите соответствие между характеристиками и органическими веществами: 1) белки; 2) нуклеиновые кислоты. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) представлены глобулой
Б) имеют пептидные связи
В) синтезируются в ядре
Г) служат биокатализаторами
Д) включают полинуклеотидную цепь
Е) способны к репликации

Ответ

БЕЛКИ В ОЛИЧИЕ ОТ НК
Выберите три варианта. Белки, в отличие от нуклеиновых кислот,
1) участвуют в образовании плазматической мембраны
2) входят в состав хромосом
3) выполняют гуморальную регуляцию
4) осуществляют транспортную функцию
5) выполняют защитную функцию
6) переносят наследственную информацию из ядра к рибосоме

Ответ

БЕЛКИ — ЛИПИДЫ — УГЛЕВОДЫ
Установите соответствие между особенностями строения и свойств вещества и веществом, имеющим эти особенности: 1) Белки, 2) Углеводы, 3) Липиды, запишите цифры 1, 2 и 3 в правильном порядке.
А) Неполярны, нерастворимы в воде
Б) В состав входит остаток глицерина
В) Мономером является глюкоза
Г) Мономеры связаны пептидной связью
Д) Обладают ферментативными функциями
Е) Входит в состав клеточных стенок растительных клеток

Ответ

ЛИПИДЫ ФУНКЦИИ
1. Выберите три варианта. Какие функции выполняют липиды в организме?
1) энергетическую
2) двигательную
3) информационную
4) строительную
5) защитную
6) транспортную

Ответ

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Функциями липидов в организме человека являются:
1) каталитическая
2) энергетическая
3) строительная
4) двигательная
5) транспортная
6) регуляторная

Ответ

ЛИПИДЫ ПРИМЕРЫ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие из перечисленных веществ относят к липидам?
1) инсулин
2) гликоген
3) триглицериды
4) холестерол
5) тестостерон
6) коллаген

Ответ

ЛИПИДЫ КРОМЕ
Все приведенные ниже признаки, кроме двух, можно использовать для определения функций липидов в клетке. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) запасающая
2) регуляторная
3) транспортная
4) ферментативная
5) строительная

Ответ

ЛИПИДЫ ОБМЕН
Установите правильную последовательность обмена жиров в организме человека, начиная с их поступления с пищей. Запишите соответствующую последовательность цифр.
1) образование глицерина и высших карбоновых кислот
2) синтез липоидов в клетках тела
3) обработка жиров пищи ферментом липазой в двенадцатиперстной кишке
4) образование энергии при окислении веществ до углекислого газа и воды
5) всасывание продуктов расщепления в лимфатические капилляры тонкого кишечника

Ответ

ЛИПИДЫ — УГЛЕВОДЫ
1. Установите соответствие между функциями и веществами: 1) углеводы, 2) липиды. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) обеспечивают узнавание клеток ткани своего типа
Б) образуют двойной слой мембраны
В) участвуют в гормональной регуляции
Г) образуют стенки растительных клеток
Д) защищают организм от теплопотерь

Ответ

2. Установите соответствие между свойством или функцией органических веществ и их видом: 1) липиды, 2) моносахариды. Запишите цифры 1 и 2 в правильном порядке.
А) растворимы в воде
Б) гидрофобны
В) составляют основу клеточных мембран
Г) состоят из остатков глицерина и жирных кислот
Д) образуются в результате расщепления крахмала

Ответ

УГЛЕВОДЫ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Функциями углеводов в организме человека являются
1) регуляторная
2) энергетическая
3) запасающая
4) строительная
5) хранение генетической информации
6) ферментативная

Ответ

Выберите три варианта. Какие углеводы относят к моносахаридам?
1) рибоза
2) глюкоза
3) целлюлоза
4) фруктоза
5) крахмал
6) гликоген

Ответ

Установите соответствие между характеристикой углевода и его группой: 1) моносахарид, 2) полисахарид
А) является биополимером
Б) обладает гидрофобностью
В) проявляет гидрофильность
Г) служит запасным питательным веществом в клетках животных
Д) образуется в результате фотосинтеза
Е) окисляется при гликолизе

Ответ

Установите соответствие между особенностями молекул углеводов и их видами: 1) целлюлоза, 2) глюкоза. Запишите цифры 1 и 2 в правильном порядке.
А) мономер
Б) полимер
В) растворимы в воде
Г) не растворимы в воде
Д) входят в состав клеточных стенок растений
Е) входят в состав клеточного сока растений

Ответ

УГЛЕВОДЫ КРОМЕ
1. Все приведенные ниже признаки, кроме двух, можно использовать для определения свойств, строения и функций полисахаридов в клетке. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) выполняют запасающую функцию
2) выполняют каталитическую и транспортную функции
3) состоят из остатков молекул аминокислот
4) выполняют энергетическую функцию
5) входят в состав клеточных стенок

Ответ

2. Все перечисленные ниже признаки, кроме двух, используются для описания особенностей полисахаридов. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) выполняют структурную и запасающую функции
2) состоят из остатков аминокислот
3) обладают гидрофобностью
4) служат ферментами
5) входят в состав клеточной стенки

Ответ

3. Все перечисленные ниже характеристики используют для описания функций углеводов. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) образуют клеточные стенки растений и грибов
2) ускоряют процессы метаболизма
3) запасаются в клетках
4) служат коферментами
5) входят в состав нуклеотидов

Ответ

КРАХМАЛ КРОМЕ
1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы крахмала. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоит из одной цепи
2) хорошо растворяется в воде
3) в комплексе с белками образует клеточную стенку
4) подвергается гидролизу
5) является запасным веществом в растительных клетках

Ответ

2. Все перечисленные признаки, кроме двух, можно использовать при описании молекулы крахмала. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) хорошо растворим в воде
2) состоит из остатков глюкозы
3) имеет как разветвлённые, так и неразветвлённые молекулы
4) обладает сладким вкусом
5) является запасным веществом растений

Ответ

УГЛЕВОДЫ ОБМЕН
1. Установите последовательность процессов обмена углеводов в организме человека. Запишите соответствующую последовательность цифр.
1) всасывание моносахаридов в ворсинки кишечника
2) поступление моносахаридов в клетки организма
3) синтез собственных полисахаридов в клетках организма
4) расщепление полисахаридов в пищеварительном канале
5) поступление моносахаридов в кровь

Ответ

2. Установите последовательность процессов углеводного обмена в организме человека. Запишите соответствующую последовательность цифр.
1) поступление глюкозы в клетки организма и уменьшение ее концентрации в крови
2) расщепление крахмала ферментами пищеварительных соков до глюкозы
3) усиление секреции инсулина поджелудочной железой
4) поступление крахмала в организм с пищей
5) всасывание глюкозы и увеличение ее концентрации в крови

Ответ

УГЛЕВОДЫ — НК
1. Установите соответствие между особенностями и видами молекул: 1) ДНК, 2) полисахарид. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) обладает способностью к репликации
Б) может образовывать разветвлённую структуру
В) состоит из нуклеотидов
Г) образуется путём соединения молекул простых углеводов
Д) выполняет защитную и энергетическую функции
Е) обеспечивает матричный синтез рибонуклеиновых кислот

Ответ

2. Установите соответствие между видами органических веществ: 1) углеводы, 2) нуклеиновые кислоты – и выполняемыми ими функциями в клетке. Запишите цифры 1 и 2 в правильном порядке.
A) запасание энергии
Б) сигнальная
B) хранение генетической информации
Г) перенос энергии
Д) входит в состав клеточных стенок и мембран
Е) реализация генетической информации (синтез белка)

Ответ


Проанализируйте таблицу «Органические вещества». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка и запишите выбранные цифры в порядке, соответствующем буквам.
1) ускорение химических реакций
2) хлоропласты
3) белки
4) гормоны
5) жиры
6) ядро
7) передача наследственной информации
8) витамины

Ответ


Проанализируйте таблицу «Основные органические соединения». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.
1) Нуклеиновые кислоты
2) 5-10%
3) Пластическая, запасающая, защитная
4) 0,2-2%
5) Белки
6) Энергетическая, пластическая, запасающая, защитная, регуляторная

Ответ


Проанализируйте таблицу «Потребности организма в питательных веществах». Для каждой буквы выберите соответствующий термин из предложенного списка.
1) углеводы
2) витамины
3) чай, соки, супы
4) злаки, крупы, корнеплоды
5) масла, яйца, молочные продукты
6) для роста и регенерации тканей
7) главный источник быстрой энергии
8) для передачи нервного импульса, поддержания гомеостаза

Ответ


Проанализируйте таблицу «Органические вещества». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка. Запишите выбранные цифры, в порядке, соответствующем буквам.
1) энергетическая, защитная, строительная
2) полисахариды
3) репликация
4) моносахариды
5) структурная, запасающая, транспортная
6) энергетическая, запасающая, регуляторная
7) регенерация
8) денатурация

Ответ


Проанализируйте таблицу «Органические вещества клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) белки
2) липид
3) глицерин
4) жирные кислоты
5) нуклеотид
6) запасающая и ферментативная
7) транспортная и защитная
8) энергетическая

Ответ


Проанализируйте таблицу «Вещества клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.
1) Нуклеиновые кислоты
2) Энергетическая, структурная, регуляторная и защитная
3) Содержит рибозу
4) Вода
5) Хранение и передача наследственной информации
6) Содержит дезоксирибозу
7) Высокомолекулярные азотосодержащие биополимеры, мономером которых являются аминокислоты

Ответ


Все перечисленные ниже признаки, кроме двух, используются для описания изображенных на рисунке молекул. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) служат структурным компонентом мембран
2) ускоряют химические реакции
3) передают сигналы в организме
4) гидрофильны
5) могут служить запасом питательных веществ

Ответ

Установите соответствие между химическими соединениями, изображенными на рисунке, и их характеристиками. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) аминокислота
Б) азотистое основание
В) глицин
Г) аденин
Д) входит в состав белков
Е) входит в состав нуклеиновых кислот

Ответ

Выберите три варианта. Какие вещества относят к биополимерам?
1) крахмал
2) глицерин
3) глюкозу
4) белки
5) ДНК
6) фруктозу

Ответ

Выберите три варианта. Какие функции выполняют в клетке молекулы углеводов и липидов?
1) информационную
2) каталитическую
3) строительную
4) энергетическую
5) запасающую
6) двигательную

Ответ

Какие превращения веществ могут происходить в организме человека? Выберите три верных ответа из шести. Запишите цифры, под которыми они указаны.
1) гликогена в глюкозу
2) жиров в белки
3) гормонов в ферменты
4) жиров в углеводы
5) гормонов в витамины
6) углеводов в жиры

Ответ

Обмен липидов в организме (жировой обмен)

Биохимия липидного обмена

Жировым обменом называют совокупность процессов переваривания и всасывания нейтральных жиров (триглицеридов) и продуктов их распада в желудочно-кишечном тракте, промежуточного обмена жиров и жирных кислот и выведение жиров, а также продуктов их обмена из организма . Понятия «жировой обмен» и «липидный обмен» часто используются как синонимы, т.к. входящие в состав тканей животных и растений входят нейтральные жиры и жироподобные соединения, объединяются под общим названием липиды.

По среднестатистическим данным в организм взрослого человека с пищей ежесуточно поступает в среднем 70 г жиров животного и растительного происхождения. В ротовой полости жиры не подвергаются никаким изменениям, т.к. слюна не содержит расщепляющих жиры ферментов. Частичное расщепление жиров на глицерин и жирные кислоты начинается в желудке. Однако оно протекает с небольшой скоростью, поскольку в желудочном соке взрослого человека активность фермента липазы, катализирующего гидролитическое расщепление жиров, крайне невысока, а величина рН желудочного сока далека от оптимальной для действия этого фермента (оптимальное значение рН для желудочной липазы находится в пределах 5,5—7,5 единиц рН). Кроме того, в желудке отсутствуют условия для эмульгирования жиров, а липаза может активно гидролизовать только жир, находящийся в форме жировой эмульсии. Поэтому у взрослых людей жиры, составляющие основную массу пищевого жира, в желудке особых изменений не претерпевают.

Однако в целом желудочное пищеварение значительно облегчает последующее переваривание жира в кишечнике. В желудке происходит частичное разрушение липопротеиновых комплексов мембран клеток пищи, что делает жиры более доступными для последующего воздействия на них липазы панкреатического сока. Кроме того, даже незначительное по объему расщепление жиров в желудке приводит к появлению свободных жирных кислот, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и там способствуют эмульгированию жира.

Наиболее сильным эмульгирующим действием обладают желчные кислоты, попадающие в двенадцатиперстную кишку с желчью. В двенадцатиперстную кишку вместе с пищевой массой заносится некоторое количество желудочного сока, содержащего соляную кислоту, которая в двенадцатиперстной кишке нейтрализуется в основном бикарбонатами, содержащимися в панкреатическом и кишечном соке и желчи. Образующиеся при реакции бикарбонатов с соляной кислотой пузырьки углекислого газа разрыхляют пищевую кашицу и способствуют более полному перемешиванию ее с пищеварительными соками. Одновременно начинается эмульгирование жира. Соли желчных кислот адсорбируются в присутствии небольших количеств свободных жирных кислот и моноглицеридов на поверхности капелек жира в виде тончайшей пленки, препятствующей слиянию этих капелек. Кроме того, соли желчных кислот, уменьшая поверхностное натяжение на границе раздела фаз вода — жир, способствуют дроблению больших капелек жира на меньшие. Создаются условия для образования тонкой и устойчивой жировой эмульсии с частицами диаметром 0,5 мкм и меньше. В результате эмульгирования резко увеличивается поверхность капелек жира, что увеличивает площадь их взаимодействия с липазой, т.е. ускоряет ферментативный гидролиз, а также всасывание.

Основная часть пищевых жиров подвергается расщеплению в верхних отделах тонкой кишки при действии липазы панкреатического сока. Так называемая панкреатическая липаза проявляет оптимум действия при рН около 8,0.

В кишечном соке содержится липаза, катализирующая гидролитическое расщепление моноглицеридов и не действующая на ди- и триглицериды. Ее активность, однако, невысока, поэтому практически основными продуктами, образующимися в кишечнике при расщеплении пищевых жиров, являются жирные кислоты и в-моноглицериды.

Всасывание жиров, как и других липидов, происходит в проксимальной части тонкой кишки. Фактором, лимитирующим этот процесс, по-видимому, является величина капелек жировой эмульсии, диаметр которых не должен превышать 0,5 мкм. Однако основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты и моноглицериды. Всасывание этих соединений происходит при участии желчи.

Небольшие количества глицерина, образующиеся при переваривании жиров, легко всасываются в тонкой кишке. Частично глицерин превращается в б-глицерофосфат в клетках кишечного эпителия, частично поступает в кровяное русло. Жирные кислоты с короткой углеродной цепью (менее 10 углеродных атомов) также легко всасываются в кишечнике и поступают в кровь, минуя какие-либо превращения в кишечной стенке.

Продукты расщепления пищевых жиров, образовавшиеся в кишечнике и поступившие в его стенку, используются для ресинтеза триглицеридов. Биологический смысл этого процесса состоит в том, что в стенке кишечника синтезируются жиры, специфичные для человека и качественно отличающиеся от пищевого жира. Однако способность организма к синтезу жира, специфичного для организма, ограничена. В его жировых депо могут откладываться и чужеродные жиры при их повышенном поступлении в организм.

Механизм ресинтеза триглицеридов в клетках стенки кишечника в общих чертах идентичен их биосинтезу в других тканях.

Через 2 ч после приема пищи, содержащей жиры, развивается так называемая алиментарная гиперлипемия, характеризующаяся повышением концентрации триглицеридов в крови. После приема слишком жирной пищи плазма крови принимает молочный цвет, что объясняется присутствием в ней большого количества хиломикронов (класс липопротеинов, образующихся в тонком кишечнике в процессе всасывания экзогенных липидов). Пик алиментарной гиперлипемии отмечается через 4—6 ч после приема жирной пищи, а через 10—12 ч содержание жира в сыворотке крови возвращается к норме, т. е. составляет 0,55—1,65 ммоль/л, или 50—150 мг/100 мл. К этому же времени у здоровых людей из плазмы крови полностью исчезают хиломикроны. Поэтому взятие крови для исследования вообще, а особенно для определения содержания в ней липидов, должно проводиться натощак, спустя 14 ч после последнего приема пищи .

Печень и жировая ткань играют наиболее важную роль в дальнейшей судьбе хиломикронов. Допускают, что гидролиз триглицеридов хиломикронов может происходить как внутри печеночных клеток, так и на их поверхности. В клетках печени имеются ферментные системы, катализирующие превращение глицерина в б-глицерофосфат, а неэтерифицированных жирных кислот (НЭЖК) — в соответствующие ацил-КоА, которые либо окисляются в печени с выделением энергии, либо используются для синтеза триглицеридов и фосфолипидов. Синтезированные триглицериды и частично фосфолипиды используются для образования липопротеинов очень низкой плотности (пре-в-липопротеинов), которые секретируются печенью и поступают в кровь. Липопротеины очень низкой плотности (в этом виде за сутки в организме человека переносится от 25 до 50 г триглицеридов) являются главной транспортной формой эндогенных триглицеридов.

Хиломикроны из-за своих больших размеров не способны проникать в клетки жировой ткани, поэтому триглицериды хиломикронов подвергаются гидролизу на поверхности эндотелия капилляров, пронизывающих жировую ткань, под действием фермента липопротеинлипазы. В результате расщепления липопротеинлипазой триглицеридов хиломикронов (а также триглицеридов пре-в-липопротеинов) образуются свободные жирные кислоты и глицерин. Часть этих жирных кислот проходит внутрь жировых клеток, а часть связывается с альбуминами сыворотки крови. С током крови покидают жировую ткань глицерин, а также частицы хиломикронов и пре-в-липопротеинов, оставшиеся после расщепления их триглицеридного компонента и получившие название ремнантов. В печени ремнанты подвергаются полному распаду.

После проникновения в жировые клетки жирные кислоты превращаются в свои метаболически активные формы (ацил-КоА) и вступают в реакцию с б-глицерофосфатом, образующимся в жировой ткани из глюкозы. В результате этого взаимодействия ресинтезируются триглицериды, которые пополняют общий запас триглицеридов жировой ткани.

Расщепление триглицеридов хиломикронов в кровеносных капиллярах жировой ткани и печени приводит к фактическому исчезновению самих хиломикронов и сопровождается просветлением плазмы крови, т.е. потерей ею молочного цвета. Это просветление может быть ускорено гепарином. Промежуточный жировой обмен включает следующие процессы: мобилизацию жирных кислот из жировых депо и их окисление, биосинтез жирных кислот и триглицеридов и превращение непредельных жирных кислот.

В жировой ткани человека содержится большое количество жира, преимущественно в виде триглицеридов. которые выполняют в обмене жиров такую же функцию, как гликоген печени в обмене углеводов. Запасы триглицеридов могут потребляться при голодании, физической работе и других состояниях, требующих большой затраты энергии. Запасы этих веществ пополняются после потребления пищи. Организм здорового человека содержит около 15 кг триглицеридов (140 000 ккал) и только 0,35 кг гликогена (1410 ккал) .

Триглицеридов жировой ткани при средней энергетической потребности взрослого человека, составляющей 3500 ккал в сутки, теоретически достаточно, чтобы обеспечить 40-дневную потребность организма в энергии.

Триглицериды жировой ткани подвергаются гидролизу (липолизу) под действием ферментов липаз. В жировой ткани содержится несколько липаз, из которых наибольшее значение имеют так называемые гормоночувствительная липаза (триглицеридлипаза), диглицеридлипаза и моноглицеридлипаза. Ресинтезированные триглицериды остаются в жировой ткани, способствуя таким образом сохранению ее общих запасов.

Усиление липолиза в жировой ткани сопровождается нарастанием концентрации свободных жирных кислот в крови. Транспорт жирных кислот осуществляется весьма интенсивно: в организме человека за сутки переносится от 50 до 150 г жирных кислот.

Связанные с альбуминами (простые растворимые в воде белки, проявляющие высокую связывающую способность) жирные кислоты с током крови попадают в органы и ткани, где подвергаются в-окислению (цикл реакций деградации жирных кислот), а затем окислению в цикле трикарбоновых кислот (цикл Кребса). Около 30% жирных кислот задерживается в печени уже при однократном прохождении через нее крови. Некоторое количество жирных кислот, не использованных для синтеза триглицеридов, окисляется в печени до кетоновых тел. Кетоновые тела, не подвергаясь дальнейшим превращениям в печени, попадают с током крови в другие органы и ткани (мышцы, сердце и др.), где окисляются до СО2 и Н2О.

Триглицериды синтезируются во многих органах и тканях, но наиболее важную роль в этом отношении играют печень, стенка кишечника и жировая ткань. В стенке кишечника для ресинтеза триглицеридов используются моноглицериды, в больших количествах поступающие из кишечника после расщепления пищевых жиров. При этом реакции осуществляются в следующей последовательности: моноглицерид + жирнокислотный ацил-КоА (активированная уксусная кислотыа)> диглицерид; диглицерид + жирно-кислотный ацил-КоА > триглицерид.

В норме количество триглицеридов и жирных кислот, выделяющихся из организма человека в неизмененном виде, не превышает 5% от количества жира, принятого с пищей. В основном выведение жира и жирных кислот происходит через кожу с секретами сальных и потовых желез. В секрете потовых желез содержатся главным образом водорастворимые жирные кислоты с короткой углеродной цепью; в секрете сальных желез преобладают нейтральные жиры, эфиры холестерина с высшими жирными кислотами и свободные высшие жирные кислоты, выведение которых обусловливает неприятный запах этих секретов. Небольшое количество жира выделяется в составе отторгающихся клеток эпидермиса.

При заболеваниях кожи, сопровождающихся повышенной секрецией сальных желез (себорея, псориаз, угри и др.) или усиленным ороговением и слущиванием клеток эпителия, выведение жира и жирных кислот через кожу значительно увеличивается.

В процессе переваривания жиров в желудочно-кишечном тракте всасывается около 98% жирных кислот, входящих в состав пищевых жиров, и практически весь образовавшийся глицерин. Оставшееся небольшое количество жирных кислот выделяется с калом в неизмененном виде или же подвергается превращению под воздействием микробной флоры кишечника. В целом за сутки у человека с калом выделяется около 5 г жирных кислот, причем не менее чем половина их имеет полностью микробное происхождение. С мочой выделяется небольшое количество короткоцепочечных жирных кислот (уксусная, масляная, валериановая), а также в-оксимасляная и ацетоуксусная кислоты, количество которых в суточной моче составляет от 3 до 15 мг. Появление высших жирных кислот в моче наблюдается при липоидном нефрозе, переломах трубчатых костей, при заболеваниях мочевых путей, сопровождающихся усиленным слущиванием эпителия, и при состояниях, связанных с появлением в моче альбумина (альбуминурия).

Схематическое изображение ключевых процессов в системе липидного метаболизма представлено в Приложении А.

Метаболизм жиров

А. Метаболизм жиров: общие сведения.

Метаболизм жиров в жировой ткани (на схеме сверху)

Жиры (триацилглицерины) — наиболее важный резерв энергии в организме животных. Они хранятся главным образом в клетках жировой ткани, адипоцитах. Там же они участвуют в постоянно происходящих процессах образования и деградации.

Жирные кислоты, необходимые для синтеза жиров (липогенеза), в составе триацилглицеринов переносятся из печени и кишечника в виде липопротеиновых комплексов (ЛОНП и хиломикроны). Липопротеин-липаза , находящаяся на поверхности эндотелиальных клеток кровеносных капилляров, отщепляет от этих липопротеинов жирные кислоты (см. рис. 273).

В адипоцитах деградация жиров (липолиз) катализируется гормонзависимой липазой . Уровень свободных жирных кислот, поступающих из жировой ткани, зависит от активности этой липазы — фермент регулирует таким образом уровень жирных кислот в плазме.

Жирные кислоты из жировой ткани транспортируются в плазму крови в неэтерифицированной форме. При этом растворимы только короткоцепочечные жирные кислоты, а жирные кислоты с более длинными цепями, менее растворимые в воде, переносятся в комплексе с альбумином.

Деградация жирных кислот в печени (на схеме слева)

Жирные кислоты поступают из плазмы крови в ткани; здесь из них синтезируются жиры или за счет окисления получается энергия. Особенно интенсивен метаболизм жирных кислот в клетках печени (гепатоцитах).

Наиболее сажным процессом деградации жирных кислот является β-окисление (см. рис. 167) в митохондриях. При этом жирные кислоты вначале активируются в цитоплазме, присоединяясь к коферменту А . Затем они с помощью транспортной системы (карнитинового челнока ; см. рис. 215) попадают в митохондриальный матрикс, где разрушаются в результате β-окисления до ацетил-КоА. Образующиеся ацетильные остатки полностью окисляются до СО2 в цитратном цикле с освобождением энергии в виде АТФ (АТР). Если количество образовавшегося ацетил-КоА превосходит энергетическую потребность гепатоцитов, что наблюдается при высоком содержании жирных кислот в плазме крови (типичные случаи — голодание и сахарный диабет), то в гепатоцитах синтезируются кетоновые тела (см. рис. 305), снабжающие энергией уже другие ткани.

Синтез жирных кислот в печени (на схеме справа)

Биосинтез жирных кислот протекает в цитоплазме, в основном в печени, жировой ткани, почках, легких и молочных железах. Главным источником атомов углерода является глюкоза, однако возможны и другие предшественники ацетил-КоА, например аминокислоты.

Первая стадия — карбоксилирование ацетил-КоА с образованием малонил-СоА — катализируется ацетил-КоА-карбоксилазой , ключевым ферментом биосинтеза жирных кислот. Создание длинноцепочечных жирных кислот осуществляется синтазой жирных кислот (см. рис. 171). Исходя из молекулы ацетил-КоА под действием этого полифункционального фермента, цепь удлиняется (процесс включает семь реакций) путем добавления малонильных групп и отщепления СО2 (в каждой реакции) с образованием пальмитата. Таким образом, в результате каждой реакции молекула удлиняется на два углеродных атома. В качестве восстановителя используется НАДФН + Н+, образующийся в гексозомонофосфатном пути (см. рис. 155) или в реакциях, катализируемых изоцитратдегидрогеназой и «малатферментом».

Удлинение цепи жирной кислоты на синтазе жирных кислот заканчивается на C16, т.е. на пальмитиновой кислоте (16:0). В последующих реакциях пальмитат используется в качестве предшественника для получения ненасыщенных или более длинноцепочечных жирных кислот.

Дальнейший биосинтез жиров протекает с участием активированных жирных кислот (ацил-КоА) и 3-глицерофосфата (см. рис. 173). Для обеспечения других тканей жиры в гепацитах упаковываются в липопротеиновые комплексы типа ЛОНП (VLDL) и поступают в кровь (см. рис. 273).

Липиды

Группа органических веществ, включающая жиры и жироподобные вещества (липоиды), называется липидами. Жиры содержатся во всех живых клетках, выполняют функции естественного барьера, ограничивая проницаемость клеток, входят в состав гормонов.

Строение

Липиды по химической природе – один из трёх типов жизненно важных органических веществ. Они практически не растворяются в воде, т.е. являются гидрофобными соединениями, но образуют с Н2О эмульсию. Липиды распадаются в органических растворителях – бензоле, ацетоне спиртах и т.д. По физическим свойствам жиры бесцветны, не имеют вкуса и запаха.

По строению липиды – соединения жирных кислот и спиртов. При присоединении дополнительных групп (фосфора, серы, азота) образуются сложные жиры. Жировая молекула обязательно включает атомы углерода, кислорода и водорода.

Жирные кислоты – алифатические, т.е. не содержащие циклических углеродных связей, карбоновые (группа -СООН) кислоты. Отличаются количеством группы -СН2-.
Выделяют кислоты:

  • ненасыщенные – включают одну или несколько двойных связей (-СН=СН-);
  • насыщенные – не содержат двойных связей между атомами углерода

Рис. 1. Строение жирных кислот.

В клетках запасаются в виде включений – капель, гранул, в многоклеточном организме – в форме жировой ткани, состоящей из адипоцитов – клеток, способных накапливать жиры.

Классификация

Липиды – сложные соединения, которые встречаются в различных модификациях и выполняют различные функции. Поэтому классификация липидов обширна и не ограничивается одним признаком. Наиболее полная классификация по строению приведена в таблице.

Типы

Виды

Общая характеристика

Простые

Глицериды

Нейтральные жиры. Относятся к сложным эфирам, состоящим из глицерина и жирных кислот. Различают моно-, ди- и триглицериды

Воски

Сложные эфиры жирных кислот и спиртов (одноатомных или двухатомных)

Сложные

Фосфолипиды

Образованы присоединением к липидам остатков фосфорной кислоты. Обширная группа, включающая две подгруппы:

– глицерофосфолипиды;

– сфинголипиды

Гликолипиды

Состоят из углеводов и липидов, образующие гидрофильно-гидрофобные комплексы

Описанные выше липиды относятся к омыляемым жирам – при их гидролизе образуется мыло. Отдельно в группу неомыляемых жиров, т.е. не взаимодействующих с водой, выделяют стероиды.
Они подразделяются на подгруппы в зависимости от строения:

  • стерины – стероидные спирты, входящие в состав животных и растительных тканей (холестерин, эргостерин);
  • желчные кислоты – производные холевой кислоты, содержащие одну группу -СООН, способствуют растворению холестерина и перевариванию липидов (холевая, дезоксихолевая, литохолевая кислоты);
  • стероидные гормоны – способствуют росту и развитию организма (кортизол, тестостерон, кальцитриол).

Рис. 2. Схема классификации липидов.

Отдельно выделяют липопротеины. Это сложные комплексы жиров и белков (аполипопротеинов). Липопротеины относят к сложным белкам, а не к жирам. В их состав входят разнообразные сложные жиры – холестерин, фосфолипиды, нейтральные жиры, жирные кислоты.
Выделяют две группы:

  • растворимые – входят в состав плазмы крови, молока, желтка;
  • нерастворимые – входят в состав плазмалеммы, оболочки нервных волокон, хлоропласты.

Рис. 3. Липопротеины.

Наиболее изучены липопротеины плазмы крови. Они различаются по плотности. Чем больше жиров, тем меньше плотность.

ТОП-4 статьикоторые читают вместе с этой

  • 1. Функции липидов
  • 2. Клеточная мембрана строение и функции
  • 3. Клеточная мембрана: функции
  • 4. Чем отличается строение клеток?

Липиды по физической структуре классифицируются на твёрдые жиры и масла. По нахождению в организме выделяют резервные (непостоянные, зависят от питания) и структурные (генетически обусловленные) жиры. По происхождению жиры могут быть растительными и животными.

Значение

Липиды должны поступать в организм вместе с пищей и участвовать в метаболизме. В зависимости от типа жиры выполняют в организме разнообразные функции:

  • триглицериды сохраняют тепло организма;
  • подкожный жир защищает внутренние органы;
  • фосфолипиды входят в состав мембран любой клетки;
  • жировая ткань является резервом энергии – расщепление 1 г жира даёт 39 кДж энергии;
  • гликолипиды и ряд других жиров выполняют рецепторную функцию – связывают клетки, получая и проводя сигналы, полученные из внешней среды;
  • фосфолипиды участвуют в свёртываемости крови;
  • воски покрывают листья растений, одновременно предохраняя их от высыхания и промокания.

Избыток или недостаток жиров в организме приводит к изменению обмена веществ и нарушению функций организма в целом.

Что мы узнали?

Жиры имеют сложное строение, классифицируются по разным признакам и выполняют разнообразные функции в организме. Липиды состоят из жирных кислот и спиртов. При присоединении дополнительных групп образуются сложные жиры. Белки и жиры могут образовывать сложные комплексы – липопротеины. Жиры входят в состав плазмалеммы, крови, ткани растений и животных, выполняют теплоизолирующую и энергетическую функции.

Тест по теме

Оценка доклада

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *