Фтор элемент

ФТОР (от греч. phthoros — разрушение; лат. Fluorum) F

хим. элемент VII гр. периодической системы, относится к галогенам; ат. н. 9, ат. м. 18,998403. Прир. Ф. состоит из одного стабильного нуклида 19F. Поперечное сечение захвата тепловых нейтронов 1∙10−31 м2. Конфигурация внеш. электронной оболочки атома 2s22p5 степень окисления -1; энергии ионизации при последоват. переходе от F0 к P7+ соотв. равны 1681, 3375, 6046, 8409, 11024, 15164 и 17868 кДж/моль; сродство к электрону 327,8 кДж/моль. Ф. — самый электроотрицат. элемент, его электроотрицательность по Полингу 3,98. Ионный радиус F (в скобках даны координац. числа): 0,115 нм (2), 0,116 нм (3), 0,117 нм (4) и 0,119 нм (6). Ядро атома 19F имеет спин 1/2 и близкое к свойственному для протия гиромагн. отношение, что позволяет получать спектры ЯМР с высоким разрешением.

Молекула своб. Ф. двухатомна, межатомное расстояние 0,14165 нм. F2 имеет аномально низкую (по сравнению с ожидаемой) в ряду галогенов энергию диссоциации (158 кДж/моль).

Содержание Ф. в земной коре 0,065% по массе. Встречается только в связанном состоянии. Осн. минерал, имеющий пром. значение,- флюорит (плавиковый шпат) CaF2, месторождения которого встречаются на всех континентах, а наиб. запасы сосредоточены в США, Мексике, Великобритании, Италии, ЮАР, Таиланде, Монголии, КНР. Общее содержание Ф. в пром. рудах CaF2 122, в перспективных — 236 млн. т (1984, без СССР). В СНГ залежи флюорита имеются в Узбекистане, Таджикистане, Казахстане, в Забайкалье, Приморском крае и др.

В небольших количествах Ф. входит в состав живых организмов (в организме человека 2,6 г Ф., из них 2,5 г — в костях), участвует в процессах образования зубов и костей, в обмене веществ и в активации некоторых ферментов. Нормальное поступление Ф. в организм человека 2,5–3,5 мг в сут. Пониженные и повышенные количества Ф. вызывают разл. заболевания.

Ф. раств. в некоторых фторидах, хлор- и фторуглеродах. Жидкий Ф. неограниченно смешивается с жидкими O2 и O3. С водой энергично реагирует: 2F2 + 2H2O 4HF + O2. Не образует кислородных кислот, с H2 бурно реагирует, давая фтористый водород. Для орг. соед. известны фторноватистой кислоты эфиры.

Ф. — один из сильнейших окислителей и фторирующих реагентов. Благодаря высокой энергии связи элемент — фтор во фторидах и низкой энергии диссоциации F2 многие реакции фторирования простых веществ, оксидов, галогенидов и др. соед. необратимы, сопровождаются выделением большого количества тепла и образованием фторидов элементов в высш. степенях окисления. Все хим. элементы, за исключением Не, Ne и Ar, образуют устойчивые фториды.

В то же время по кинетике взаимод. с Ф. поведение веществ может сильно отличаться. Многие реакции имеют цепной характер, самопроизвольно инициируются при комнатной или более низкой температуре и протекают со вспышкой или со взрывом, а в потоке — с возникновением пламени. К таким реакциям относится фторирование H2 и водородсодержащих веществ (углеводородов, H2O, NH3, N2H4, HCl, HBr, HCN и др.), S и ее производных (SO2, SOCl2, S4N4, SBr2 и др.), Si, P и др. Теоретич. температура горения стехиометрич. смеси с H2 4430 К. При комнатной температуре с Ф. способны реагировать щелочные металлы, некоторые галогениды, гидраты солей. В то же время реакции F2 с большей частью простых веществ и неорг. соед. протекают лишь при их активации, достигаемой обычно повышением температуры или давления. На величину температуры начала фторирования влияют природа веществ, дисперсность твердых веществ, свойства продуктов реакции (нелетучие фториды могут экранировать поверхность, замедлять и даже прекращать фторирование), условия процесса (парциальное давление F2, интенсивность теплоотвода и др.). Реакция F2 с Ag, V, Re, Os начинается при 100–250 °C, с Au, Cd, Ti, Zr, Nb, Ta, Cr, W, Mn, Со — при 300–350 °C, а с Al, Fe, Cu, Zn, Y, Ni (на поверхности которых образуется пленка нелетучих фторидов) — лишь ок. 400–500 °C. Температурный интервал «спокойного», регулируемого фторирования, однако, невелик, и при избытке F2 многие реакции переходят при превышении некоторой температуры в горение. Особое место занимает фторирование графита, сопровождающееся образованием при температурах ниже 400 °C фторидов графита CFx (см. графита соединения).

Оксиды металлов и многие соли неск. более устойчивы к действию F2, чем сами металлы. Взаимод. оксидов может сопровождаться образованием на промежут. стадиях окси-фторидов.

Наиб. устойчивы к действию F2 благородные газы, N2, O2, алмаз, некоторые виды стеклоуглерода, CO, CO2, сапфир и алунд.

Одним из путей снижения температуры фторирования является применение катализаторов. Активация F2 м. б. проведена также его атомизацией и ионизацией в газовых разрядах, электронном пучке, под действием УФ облучения и термокаталитически (на нагретой поверхности катализатора). Атомный F при комнатной температуре и в криогенных условиях взаимод. с Xe,

Kr, CO, NOF, NO2, O2, ClF3 и мн. др. веществами.

• см. также фторирование

Наиб. важным соед. Ф. посвящены отдельные статьи: Азота фториды, Бора трифторид, Галогенфториды, Кислорода фториды, Кремния фториды, Фтористоводородная кислота, Фтористый водород, Фторобораты, Фторорганические соединения, Фторосиликаты и др.

Получение. Общая схема производства своб. Ф. включает добычу и обогащение флюоритовых руд, серно-кислотное разложение флюоритовых концентратов, выделение и очистку безводного HF, его электролитич. разложение. Ведущие производители флюоритовых концентратов — Мексика (20–25% мирового производства), ЮАР, Монголия, КНР, Таиланд, Франция, Испания. Общий мировой объем их производства 4–5 млн. т в год.

Электролитич. разложение HF м. б. осуществлено 3 способами: низкотемпературным (15–50 °C, в смеси HF с KF), среднетемпературным (70–120 °C, расплав KH2F3) и высокотемпературным (245–310 °C, расплав KHF2). В промышленности используют среднетемпературный способ. Стандартный потенциал разложения HF в расплаве KH2F3 равен 2,9 В. Пром. электролизеры работают обычно при 80–105 °C, напряжении 8,5–12,0 В и анодной плотности тока 70–180 мА/см2. Их мощность по току достигает 11 кА, опытных образцов −15 кА, что соответствует производительности 7–10 кг P2/ч.

Электролизеры представляют собой стальные или монеле-вые ванны с размещенными на крышке угольными анодами и расположенными между анодами стальными катодами. В некоторых конструкциях между катодами и анодами имеются перфорированные диафрагмы, предотвращающие смешивание и взаимод. выделяющихся F2 и H2. Совр. электролизеры снабжены системами непрерывной подачи в них HF, поддержания постоянной температуры, отвода H2 и F2. Отбор F2 проводят с помощью спец. коробчатых сборников, «колоколов», расположенных на крышке и погруженных в расплав так, что они окружают верх. часть анодов. При электролизе на поверхности угольных анодов образуется пассивирующий слой фторидов графита CFx, что вызывает «анодный эффект» — резкое повышение напряжения и его скачки. Этот эффект подавляют введением в электролит добавок, использованием анодов особой конструкции и пульсирующего тока. Свежезагружаемый электролит тщательно обезвоживают, проводя электролиз примеси влаги при низком напряжении. Для снижения температуры процесса разрабатывают электролиз смеси KH2F3 — NH4HF2 — HF.

Очищают Ф. методами селективной сорбции примесей (HF на гранулированном пористом NaF), вымораживания примесей, сжижения Ф., хим. и фотохим. связывания примесей. Глубокую очистку Ф. проводят с помощью низкотемпературной ректификации или его обратимой хемосорбцией (напр., путем образования и термич. разложения K2NiF4).

Для получения своб. Ф. в лабораториях или в портативных установках могут использоваться его твердые источники. Так, MnF4 при нагр. до 200 °C выделяет ок. 15% F2 от своей начальной массы. Взаимод. K2MnF6 и SbF5 протекает с выделением KSbF6, MnF3 и F2. Разработаны пиротехн. источники F2, содержащие соли тетрафтораммония.

Определение. Осн. метод определения Ф. в растворах — потен-циометрия с использованием спец. селективных электродов. Чувствит. элемент таких электродов (мембрану) чаще всего изготовляют из монокристаллич. LaF3, легированного дифто-ридами др. металлов. Кроме того, применяют гравиметрич. или объемный методы, основанные на осаждении труднорастворимых PbClF, CaF2, ThF4 и др.

Наиб. универсальный метод разложения мн. твердых неорг. фторидов — пирогидролиз. Образующийся HF поглощают водными растворами и анализируют объемным или потенциометрич. методами. Применяют также отгонку с парами H2O и улавливание в виде H2SiF6, разл. физ. методы.

Свободный Ф. в газах определяют потенциометрически, поглощением его твердым NaCl и последующим определением выделившегося Cl2 иодометрически, поглощением его ртутью и волюмометрич. определением. Фторорг. вещества предварительно разлагают натрием. Качественно Ф. обнаруживают по вьщелению HF, а также методами количеств, анализа.

Ф. сильно токсичен. Раздражает кожу, слизистые оболочки носа и глаз; непереносимая концентрация 77 мг/м3. Вызывает дерматиты, конъюнктивиты, отек легких. Контакт с чистым Ф. приводит к ожогу. Хронич. отравление соед. Ф. вызывает флюороз. ПДК 0,03 мг/м3 — в воздухе производств. помещений, 0,7 мг/л — в воде (для фторид-иона).

Сжиженный Ф. перевозят в охлаждаемых цистернах и хранят в танках.

Мощности по производству своб. Ф. в развитых странах достигают 15–20 тыс. т в год.

Ф. открыт К. Шееле в 1771, в свободном виде получен А. Муассаном в 1886.

Э. Г. Раков

Источник: Химическая энциклопедия на Gufo.me

Значения в других словарях

  1. фтор — -а, м. Бледно-желтый газ с резким запахом, самый активный из неметаллов, разрушающе действующий на многие вещества. Малый академический словарь
  2. Фтор — (хим. обозначение F, частица F2, атомный вес — 19,05). Ф. — химический элемент, составляющий вместе с хлором, бромом и йодом одну особую характерную группу тел, так называемую группу галоидов. Свое название… Энциклопедический словарь Брокгауза и Ефрона
  3. фтор — ФТОР, а, м. Химический элемент, ядовитый бесцветный газ с едким запахом. | прил. фтористый, ая, ое. Толковый словарь Ожегова
  4. фтор — ФТОР -а; м. Химический элемент (F), светло-жёлтый газ с едким запахом. Добавлять в питьевую воду ф. Толковый словарь Кузнецова
  5. Фтор — (Ftuorum; F) химический элемент VII группы периодической системы Д.И. Менделеева, атомный номер 9, атомный вес (масса) 18,998; относится к галогенам; бледно-желтый газ с резким запахом; соединения Ф. содержатся в тканях организма, главным. образом в костях и зубной эмали. Медицинская энциклопедия
  6. фтор — фтор м. Химический элемент, светло-жёлтый ядовитый газ с едким запахом. Толковый словарь Ефремовой
  7. фтор — орф. фтор, -а Орфографический словарь Лопатина
  8. Фтор — (лат. Fluorum) F, химический элемент VII группы периодической системы Менделеева, относится к галогенам (См. Галогены), атомный номер 9, атомная масса 18,998403; при нормальных условиях (0 °С; 0,1 Мн/м2… Большая советская энциклопедия
  9. ФТОР — ФТОР (лат. Fluorum) — F, химический элемент VII группы периодической системы Менделеева, атомный номер 9, атомная масса 18,998403, относится к галогенам. Бледно-желтый газ с резким запахом, tпл ?219,699 °С, tкип ?188,200 °С, плотность 1,70 г/см3. Большой энциклопедический словарь
  10. ФТОР — ФТОР (символ F), газообразный токсичный элемент группы ГАЛОГЕНОВ (элементы VII группы периодической таблицы), впервые выделенный в 1886 г. Его основными источниками являются флюорит и криолит. Научно-технический словарь
  11. фтор — ФТОР, фтора, ·муж. (·греч. phthoros — гибель) (·хим. ). Химический элемент, бесцветный газ с едким запахом. Толковый словарь Ушакова
  12. фтор — ФТОР, см. флюор. Толковый словарь Даля
  13. фтор — Фтор/. Морфемно-орфографический словарь
  14. Фтор — F (от греч. phthoros — гибель, разрушение, лат. Fluorum * a. fluorine; н. Fluor; ф. fluor; и. fluor), — хим. элемент VII группы периодич. системы Mенделеева, относится к галогенам, ат. н. 9, ат. м. 18,998403. B природе 1 стабильный изотоп 19F. Горная энциклопедия
  15. фтор — Фтора, м. (хим.). Химический элемент, бесцветный газ с едким запахом. Большой словарь иностранных слов
  16. фтор — Фтор, фторы, фтора, фторов, фтору, фторам, фтор, фторы, фтором, фторами, фторе, фторах Грамматический словарь Зализняка
  17. фтор — сущ., кол-во синонимов: 5 газ 55 галоген 7 неметалл 17 флуар 1 элемент 159 Словарь синонимов русского языка

Фтор
Атомный номер 9
Внешний вид простого вещества Фтор в сосуде Бледно-жёлтый газ,
чрезвычайно химически активен.
Очень ядовит.
Свойства атома
Атомная масса
(молярная масса)
18,998403 а. е. м. (г/моль)
Радиус атома 71 пм
Энергия ионизации
(первый электрон)
1680,0 (17,41) кДж/моль (эВ)
Электронная конфигурация 2s2 2p5
Химические свойства
Ковалентный радиус 72 пм
Радиус иона (-1e)133 пм
Электроотрицательность
(по Полингу)
3,98
Электродный потенциал 0
Степени окисления −1
Термодинамические свойства простого вещества
Плотность (при −189 °C)1,108 г/см³
Молярная теплоёмкость 31,34 Дж/(K·моль)
Теплопроводность 0,028 Вт/(м·K)
Температура плавления 53,53 K
Теплота плавления (F-F) 0,51 кДж/моль
Температура кипения 85,01 K
Теплота испарения 6,54 (F-F) кДж/моль
Молярный объём 17,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки моноклинная
Параметры решётки 5,50 b=3,28 c=7,28 β=90.0 Å
Отношение c/a
Температура Дебая n/a K
F 9
18,9984
2s22p5
Фтор

Фтор — элемент главной подгруппы седьмой группы, второго периода периодической системы химических элементов Менделеева, с атомным номером 9. Обозначается символом F Fluorum. Фтор — чрезвычайно химически активный неметалл и самый сильный окислитель, является самым лёгким элементом из группы галогенов. Простое вещество фтор (CAS-номер: 7782-41-4) при нормальных условиях — двухатомный газ бледно-жёлтого цвета с резким запахом, напоминающим озон или хлор (формула F2). Очень ядовит.

История

Схема атома фтора

Первое соединение фтора — флюорит (плавиковый шпат) CaF2 — описано в конце XV века под названием «флюор». В 1771 году Карл Шееле получил плавиковую кислоту.

Как один из атомов плавиковой кислоты, элемент фтор был предсказан в 1810 году, а выделен в свободном виде лишь семьдесят шест лет спустя Анри Муассаном в 1886 году электролизом жидкого безводного фтористого водорода, содержащего примесь кислого фторида калия KHF2.

Происхождение названия

Название «фтор» (φθόρος — разрушение), предложенное Андре Ампером в 1810 году, употребляется в русском и некоторых других языках; во многих странах приняты названия, производные от латинского «Fluorum» (которое происходит, в свою очередь, от fluere — «течь», по свойству соединения фтора, флюорита (CaF2), понижать температуру плавления руды и увеличивать текучесть расплава).

Распространение в природе

Содержание фтора в атомных процентах в природе показано в таблице:

Объект
Почва 0,02
Воды рек 0,00002
Воды океана 0,0001
Зубы человека 0,01

В природе значимые скопления фтора содержатся разве что только в минерале флюорите.

В некоторой степени относительно богаты фтором растения чечевица и лук

Содержанием в почве фтор обязан вулканическим газам, за счет того, что в их состав обычно входит большое количество фтороводорода.

Изотопный состав

Фтор является моноизотопным элементом, так как в природе существует только один стабильный изотоп фтора 19F. Известны еще 17 радиоактивных изотопов фтора с массовым числом от 14 до 31, и один ядерный изомер — 18Fm. Самым долгоживущим из радиоактивных изотопов фтора является 18F с периодом полураспада 109,771 минуты, важный источник позитронов, использующийся в позитрон-эмиссионной томографии.

Ядерные свойства изотопов фтора

Магнитные свойства ядер

Ядра изотопа 19F имеют полуцелый спин, поэтому возможно применение этих ядер для ЯМР-исследований молекул. Спектры ЯМР-19F являются достаточно характеристичными для фторорганических соединений.

Электронное строение

Применение метода МО для молекулы F2

Электронная конфигурация атома фтора следующая: 1s22s22p5. Атомы фтора в соединениях могут проявлять степень окисления равную −1. Положительные степени окисления в соединениях не реализуются, так как фтор является самым электроотрицательным элементом.

Квантовохимический терм атома фтора — ²P3/2

Строение молекулы

С точки зрения теории молекулярных орбиталей, строение двухатомной молекулы фтора можно охарактеризовать следующей диаграммой. В молекуле присутствует 4 связывающих орбители и 3 разрыхляющих. Очевидно, что порядок связи в молекуле равен 1.

Кристаллическая решётка

Кристаллическая структура α-фтора (стабильная при атмосферном давлении)

Кристаллическая решётка фтора в твёрдом состоянии является моноклиной гранецентрированной со следующими параметрами решётки:

Параметр и значение
a 550 пм
b 328 пм
c 728 пм
α=β=γ 90°

Получение

Лабораторный метод получения фтора

Источником для производства фтора служит фтористый водород HF, получающийся в основном либо при действии серной кислоты H2SO4 на флюорит CaF2, либо при переработке апатитов и фосфоритов.

Лабораторный метод

Лабораторные условия — фтор можно получать с помощью химических установок. В медный сосуд 1, заполненный расплавом KF·3HF помещают медный сосуд 2, имеющий отверстия в дне. В сосуд 2 помещают толстый никелевый анод. Катод помещается в сосуд 1. Таким образом, в процессе электролиза газообразный фтор выделяется из трубки 3, а водород из трубки 4. Важным требованием является обеспечение герметичности системы, для этого используют пробки из фторида кальция со смазкой из оксида свинца (II) и глицерина.

В 1986 году, во время подготовки к конференции по поводу празднования 100-летия открытия фтора, Карл Кристе открыл способ чисто химического получения фтора с использованием реакции во фтороводородном растворе K2MnF6 и SbF5 при 150 °C:

K2MnF6 + 2SbF5 → 2KSbF6 + MnF3 + ½F2 2K2MnF6 + 4SbF5 → 4KSbF6 + 2MnF3 + F2 Хотя этот метод не имеет практического применения, он демонстрирует, что электролиз необязателен.

Промышленный метод

Промышленное производство фтора осуществляется электролизом расплава кислого фторида калия KF·3HF (часто с добавлениями фторида лития), который образуется при насыщении расплава KF фтористым водородом до содержания 40—41 % HF. Процесс электролиза проводят при температурах около 100 °C в стальных электролизёрах со стальным катодом и угольным анодом.

Физические свойства

Слабо светло-оранжевый газ, в малых концентрациях запах напоминает одновременно озон и хлор, очень агрессивен и ядовит.

Химические свойства

Самый активный неметалл, бурно взаимодействует почти со всеми веществами (редкие исключения — фторопласты), и с большинством из них — с горением и взрывом. Контакт фтора с водородом приводит к воспламенению и взрыву даже при очень низких температурах (до −252°C). В атмосфере фтора горят даже вода и платина:

2F2 + 2H2O → 4HF + O2

К реакциям, в которых фтор формально является восстановителем, относятся реакции разложения высших фторидов, например:

XeF8 → XeF6 + F2 MnF4 → MnF3 + 1/2 F2

Фтор также способен окислять кислород, образуя фторид кислорода OF2.

Хранение

Фтор хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жидким азотом) в аппаратах из никеля и сплавов на его основе (монель-металл), из меди, алюминия и его сплавов, латуни, нержавеющей стали.

Применение в химической деятельности (химической промышленноси)

Газообразный фтор используется для получения:
гексафторида урана UF6 из UF4, применяемого для разделения изотопов урана для ядерной промышленности.
трёхфтористого хлора ClF3 — фторирующий агент и мощный окислитель ракетного топлива
шестифтористой серы SF6 — газообразный изолятор в электротехнической промышленности
фторидов металлов (например, W и V), которые обладают некоторыми полезными свойствами
фреонов — хороших хладагентов
тефлонов — химически инертных полимеров
гексафтороалюмината натрия — для последующего получения алюминия электролизом
различных соединений фтора

Ракетная техника

Соединения фтора широко применяются в ракетной технике как окислитель ракетного топлива.

Применение в медицине

Соединения фтора широко применяются в медицине как кровезаменители.

Биологическая и физиологическая роль

Фтор является жизненно необходимым для организма элементом. В организме человека фтор, в основном, содержится в эмали зубов в составе фторапатита — Ca5F(PO4)3. При недостаточном (менее 0,5 мг/литр питьевой воды) или избыточном (более 1 мг/литр) потреблении фтора организмом могут развиваться заболевания зубов: кариеса и флюорозу (крапчатости эмали) и остеосаркомы, соответственно.

Малое содержание фтора разрушает эмаль за счет вымывания фтора из фторапатита с образованием гидроксоапатита, и наоборот.

Для профилактики кариеса рекомендуется использовать зубные пасты с добавками фтора или употреблять фторированную воду (до концентрации 1 мг/л), или применять местные аппликации 1-2 % раствором фторида натрия или фторида олова. Такие действия могут сократить вероятность появления кариеса на 30-50 %.

Предельно допустимая концентрация связанного фторав воздухе промышленных помещениях равен 0,0005 мг/литр.

Дополнительная информация

Фториды
Соединения фтора в ракетной технике
Соединения фтора в медицине
Категория:Соединения фтора

Фтор, Fluorum, F(9)
Фтор (Fluorine, франц. и нем. Fluor) получен в свободном состоянии в 1886 г., но его соединения известны давно и широко применялись в металлургии и производстве стекла. Первые упоминания о флюорите (СаР,) под названием плавиковый шпат (Fliisspat) относятся к XVI в. В одном из сочинений, приписываемых легендарному Василию Валентину, упоминаются окрашенные в различные цвета камни — флюссе (Fliisse от лат. fluere — течь, литься), которые применялись в качестве плавней при выплавке металлов. Об этом же пишут Агрикола и Либавиус. Последний вводит особые названия для этого плавня — плавиковый шпат (Flusspat) и минеральный плавик. Многие авторы химико-технических сочинений XVII и XVIII вв. описывают разные виды плавикого шпата. В России эти камни именовались плавик, спалт, спат; Ломоносов относил эти камни к разряду селенитов и называл шпатом или флусом (флус хрустальный). Русские мастера, а также собиратели коллекций минералов (например, в XVIII в. князь П. Ф. Голицын) знали, что некоторые виды шпатов при нагревании (например, в горячей воде) светятся в темноте. Впрочем, еще Лейбниц в своей истории фосфора (1710) упоминает в связи с этим о термофосфоре (Thermophosphorus).

По-видимому, химики и химики-ремесленники познакомились с плавиковой кислотой не позднее XVII в. В 1670 г. нюрнбергский ремесленник Шванхард использовал плавиковый шпат в смеси с серной кислотой для вытравливания узоров на стеклянных бокалах. Однако в то время природа плавикового шпата и плавиковой кислоты была совершенно неизвестна. Полагали, например, что протравливающее действие в процессе Шванхарда оказывает кремневая кислота. Это ошибочное мнение устранил Шееле, доказав, что при взаимодействии плавикового шпата с серной кислотой кремневая кислота получается в результате разъедания стеклянной реторты образующейся плавиковой кислотой. Кроме того, Шееле установил (1771), что плавиковый шпат представляет собой соединение известковой земли с особой кислотой, которая получила название «Шведская кислота».

Лавуазье признал радикал плавиковой кислоты (radical fluorique) простым телом и включил его в свою таблицу простых тел. В более или менее чистом виде плавиковая кислота была получена в 1809 r. Гей-Люссаком и Тенаром путем перегонки плавикового шпата с серной кислотой в свинцовой или серебряной реторте. При этой операции оба исследователя получили отравление. Истинную природу плавиковой кислоты установил в 1810 г. Ампер. Он отверг мнение Лавуазье о том, что в плавиковой кислоте должен содержаться кислород, и доказал аналогию этой кислоты с хлористоводородной кислотой. О своих выводах Ампер сообщил Дэви, который незадолго до этого установил элементарную природу хлора. Дэви полностью согласился с доводами Ампера и затратил немало усилий на получение свободного фтора электролизом плавиковой кислоты и другими путями. Принимая во внимание сильное разъедающее действие плавиковой кислоты на стекло, а также на растительные и животные ткани, Ампер предложил назвать элемент, содержащийся в ней, фтором (греч.- разрушение, гибель, мор, чума и т. д.). Однако Дэви не принял этого названия и предложил другое — флюорин (Fluorine) по аналогии с тогдашним названием хлора — хлорин (Chlorine), оба названия до сих пор употребляются в английском языке. В русском языке сохранилось название, данное Ампером.

Многочисленные попытки выделить свободный фтор в XIX в. не привели к успешным результатам. Лишь в 1886 г. Муассану удалось сделать это и получить свободный фтор в виде газа желто-зеленого цвета. Так как фтор является необычайно агрессивным газом, Муассану пришлось преодолеть множество затруднений, прежде чем он нашел материал, пригодный для аппаратуры в опытах со фтором. U-образная трубка для электролиза фтористо- водородной кислоты при 55°С (охлаждаемая жидким хлористым метилом) была сделана из платины с пробками из плавикового шпата. После того как были исследованы химические и физические свойства свободного фтора, он нашел широкое применение. Сейчас фтор — один из важнейших компонентов синтеза фторорганических веществ широкого ассортимента. В русской литературе начала XIX в. фтор именовался по-разному: основание плавиковой кислоты, флуорин (Двигубский,1824), плавиковость (Иовский), флюор (Щеглов, 1830), флуор, плавик, плавикотвор. Гесс с 1831 г. ввел в употребление название фтор.

История открытия:

Первое соединение фтора — флюорит (плавиковый шпат) CaF2 — описано в конце XV века под названием «флюор» (от fluere — «течь», по свойству этого соединения понижать температуру плавления руды и увеличивать текучесть расплава). В 1771 году Карл Шееле получил плавиковую кислоту. Как один из элементов плавиковой кислоты, элемент фтор был предсказан в 1810 году, а выделен в свободном виде лишь 76 лет спустя Анри Муассаном в 1886 году электролизом жидкого безводного фтористого водорода, содержащего примесь кислого фторида калия KHF2.
Название «фтор» (от греч. fqoroz — разрушение), предложенное Андре Ампером в 1810 году, употребляется в русском и некоторых других языках; во многих странах приняты названия, производные от латинского «Fluor».

Нахождение в природе, получение:

Фтор является «чистым элементом», то есть в природе содержится только изотоп фтора 19F. Известны 17 радиоактивных изотопов фтора с массовым числом от 14 до 31. Самым долгоживущим из них является 18F с периодом полураспада 109,8 минуты, важный источник позитронов, использующийся в позитрон-эмиссионной томографии.
В лабораторных условиях фтор можно получать с помощью электролиза. В медный сосуд 1, заполненный расплавом KF·3HF помещают медный сосуд 2, имеющий отверстия в дне. В сосуд 2 помещают толстый никелевый анод. Катод помещается в сосуд 1. Таким образом, в процессе электролиза, газообразный фтор выделяется из трубки 3, а водород из трубки 4. Важным требованием является обеспечение герметичности системы, для этого используют пробки из фторида кальция со смазкой из оксида свинца(II) и глицерина.
В 1986 году, во время подготовки к конференции по поводу празднования 100-летия открытия фтора, Карл Кристе открыл способ чисто химического получения фтора с использованием реакции во фтороводородном растворе K2MnF6 и SbF5 при 150 °C: 2K2MnF6 + 4SbF5 = 4KSbF6 + 2MnF3 + F2
Хотя этот метод не имеет практического применения, он демонстрирует, что электролиз необязателен.
Промышленное производство фтора осуществляется электролизом расплава кислого фторида калия KF·3HF (часто с добавлениями фторида лития) при температуре около 100°С в стальных электролизёрах со стальным катодом и угольным анодом.

Физические свойства:

Слабо светло-оранжевый газ, в малых концентрациях запах напоминает одновременно озон и хлор, очень агрессивен и ядовит. Сжижается при 88 К, при 55 К переходит в твердое состояние с молекулярной кристаллической решёткой, которая может находиться в нескольких модификациях. Структура a-фтора (стабильная при атмосферном давлении) является моноклинной гранецентрированной.

Химические свойства:

Самый активный неметалл, бурно взаимодействует почти со всеми веществами (редкие исключения — фторопласты), и с большинством из них — с горением и взрывом. Контакт фтора с водородом приводит к воспламенению и взрыву даже при очень низких температурах (до -252°C). Фтор также способен окислять кислород образуя фторид кислорода OF2.
С азотом фтор реагирует лишь в электрическом разряде, с платиной — при температуре красного каления. Некоторые металлы (Fe, Сu, Al, Ni, Mg, Zn) реагируют с фтором с образованием защитной плёнки фторидов, препятствующей дальнейшей реакции.
Фтор взаимодействует со многими сложными веществами. Он замещает все галогены в галогенидах, легко фторируются сульфиды, нитриды и карбиды. Гидриды металлов образуют с фтором на холоду фторид металла и HF; аммиак (в парах) — N2 и HF. Фтор замещает водород в кислотах или металлы в их солях:
НNО3(или NaNO3) + F2 => FNO3 + HF (или NaF);
Карбонаты щелочных и щелочноземельных металлов реагируют с фтором при обычной температуре; при этом получаются соответствующий фторид, СО2 и О2.
В атмосфере фтора горит даже вода: 2F2 + 2H2O = 4HF + O2.
Фтор энергично реагирует с органическими веществами.

Важнейшие соединения:

Фтороводород — бесцветный газ с резким запахом, при комнатной температуре существует преимущественно в виде димера H2F2, ниже 19,9°C — бесцветная подвижная жидкость. Хорошо растворим в воде в любом отношении с образованием фтороводородной (плавиковой) кислоты. Образует азеотропную смесь с концентрацией 35,4% HF, дымит на воздухе (вследствие образования с парами воды мелких капелек раствора) и сильно разъедает стенки дыхательных путей.
Фторид кислорода, OF2 бесцветный ядовитый газ, малорастворим в воде. Получают реакцией фтора с разб. раствором щелочи: 2NaОH + 2F2 => OF2 + 2NaF + H2O. Сильный окислитель.
Смесь паров воды и дифторида кислорода взрывоопасна: H2O + OF2 = 2HF + O2.
Гексафторид серы, SF6 (элегаз) — тяжелый газ, практически бесцветный, обладает высокими электроизолирующими свойствами, высоким напряжением пробоя, при этом практически инертен.
Фториды металлов — типичные соли, обычно менее растворимы, чем соответствующие хлориды, но AgF лучше растворим, чем другие галогениды серебра.

Применение:

Газообразный фтор используется для получения:
— гексафторида урана UF6 из UF4, применяемого для разделения изотопов урана для ядерной промышленности,
— OF2, трёхфтористый хлор ClF3 — фторирующие агенты и мощные окислители ракетного топлива,
— шестифтористой серы SF6 — газообразный изолятор в электротехнической промышленности,
— фреонов — хороших хладагентов,
— тефлонов — химически инертных полимеров,
— гексафтороалюмината натрия — для последующего получения алюминия электролизом и т.д.

Осипов Антон Анатольевич
ХФ ТюмГУ, 561/2 группа

Разрушение и гибель. Так с греческого переводится название фтора. Имя связано с историей его открытия. Десятки ученых покалечились, либо умерли, пытаясь выделить элемент, о существовании которого первым предположил Шееле. Он получил плавиковую кислоту, но не смог добыть из нее новое вещество – флюорий.

Название связано с минералом флюоритом – основой плавиковой кислоты и главным источником фтора. Получить его методом электролиза пытались и братья Ноксы из Англии, Гей-Люссак и Тенар из Франции. В ходе экспериментов погибли.

Дэви, открывший натрий, калий и кальций, связавшись с флюорием, отравился и стал инвалидом. После, научное сообщество переименовало элемент. Но так ли он опасен вне химических лабораторий и зачем нужен? На эти вопросы ответим далее.

Химические и физические свойства фтора

Фтор занимает 9-ую позицию в таблице Менделеева. В природе элемент состоит из одного стабильного нуклида. Так называют атомы, жизненный цикл которых достаточен для наблюдений и научных изысканий. Масса атома фтора – 18,998. В молекуле атомов 2.

Фтор – элемент с самой большой электроотрицательностью. Явление связано со способностью атома соединяться с другими и притягивать к себе электроны. Показатель фтора по шкале Полинга – 4. Это способствует славе 9-го элемента, как самого активного неметалла. В обычном состоянии, это желтоватый газ. Он токсичен, имеет резкий запах – нечто среднее между ароматами озона и хлора.

Фтор – вещество с аномально низкой для газов температурой кипения – всего 188 градусов Цельсия. Остальные галогены, то есть, типичные неметаллы из 7-ой группы таблицы Менделеева, кипят при больших показателях. Это связано с тем, что у них есть d-подуровень, отвечающий за полуторные связи. Молекула фтора такового не имеет.

Активность фтора выражается в числе и характере возможных реакций с другими элементами. Соединение с большинством из них сопровождается горением и взрывами. В контакте с водородом пламя рождается даже при пониженных температурах. В атмосфере фтора горит даже вода. Более того, в камере с желтоватым газом воспламеняется платина – наиболее инертный и ценный элемент.

Соединения фтора невозможны лишь с неоном, аргоном и гелием. Все 3 газа легки и инертны. Не из газов, фтору не поддается алмаз. Есть ряд элементов, реакции с которыми возможны лишь при повышенной температуре. Так, пара хлор-фтор взаимодействует лишь при 200-250-ти градусах Цельсия.

Применение фтора

Без фтора не обходятся тефлоновые покрытия. Их научное название – тетрафторэтилены. Соединения относятся к органической группе и обладают антипригарными свойствами. По сути, тефлон является пластмассой, но нестандартно тяжелой. В 2 раза превышена плотность воды, — вот причина излишнего веса покрытия и посуды с ним.

в тефлоне – почти 70%. Во фреоне элемента меньше, но вещество от этого не становится менее значимым. Газ используют в качестве охлаждающего агента. Он присутствует во всех холодильниках и кондиционерах.

В ядерной промышленности фтор имеет связь с процессом разделения изотопов урана. Ученые говорят, что не будь 9-го элемента, не было бы и атомных станций. Горючим для них служит не любой уран, а лишь несколько его изотопов, в частности, 235-ый. Методы разделения рассчитаны на газы и летучие жидкости.

Но, уран кипит при 3500 градусах Цельсия. Непонятно, какие материалы для колонн и центрифуг выдержат такой жар. Благо, есть летучий гексафторид урана, кипящий лишь при 57-ми градусах. Из него-то и выделяют металлическую фракцию.

Окисление фтора, точнее, окисление им ракетного топлива – важный элемент авиационной промышленности. В ней пригождается не газообразный элемент, а жидкость. В этом состоянии фтор становится ярко-желтым и наиболее реакционным.

В металлургии используют стандартный газ. Формула фтора преображается. Элемент включают в соединение, необходимое для получения алюминия. Его производят путем электролиза. В нем-то и участвует гексафторалюминат.

В оптике пригождается соединение магний-фтор, то есть, фторид магния. В диапазоне световых волн от вакуумного ультрафиолета до инфракрасного излучения он прозрачен. Вот и идет соединение на линзы и призмы для специализированных оптических приборов.

9-ый элемент замечен и медиками, в частности, стоматологами. Они обнаружили 0,02% фтора в составе зубов. Потом, выяснилось, что в регионах, где вещества не хватает, выше заболеваемость кариесом.

Содержится фтор в воде, откуда и поступает в организм. В дефицитных местностях стали искусственно добавлять элемент в воду. Ситуация исправилась. Поэтому, создана паста с фтором.

Фтор в зубной эмали может вызвать флюороз – потемнение, пятнистость тканей. Это следствие переизбытка элемента. Поэтому в регионах с нормальным составом воды лучше выбирать зубную пасту без фтора. Нужно, так же, отслеживать его содержание в продуктах питания. Есть даже фторированное молоко. Морепродукты обогащать не надо, в них и так много 9-го элемента.

Паста без фтора – выбор, связанный с состоянием зубов. Но в медицине элемент нужен не только в сфере стоматологии. Препараты фтора выписывают при проблемах со щитовидной железой, к примеру, базедовой болезни. В борьбе с ней ведущую роль играет пара фтор-йод.

Лекарства с 9-ым элементом нужны тем, у кого хронический сахарный диабет. Глаукома и рак тоже в списке недугов, которые лечат с участием фтора. Как кислород вещество, порой, требуется при болезнях бронх и ревматических диагнозах.

Добыча фтора

Добывают фтор все тем же путем, который помог открыть элемент. После череды смертей, одному из ученых удалось не только выжить, но и выделить небольшое количество желтоватого газа. Лавры достались Анри Муассану. За свое открытие француз удостоился Нобелевской премии. Ее выдали в 1906-ом году.

Муассан воспользовался методом электролиза. Чтобы не отравится парами, химик проводил реакцию в стальном электризере. Этот аппарат применяется и сейчас. В него помещается кислый фторид калия.

Процесс проходит при температуре в 100 градусов Цельсия. Катод используют стальной. Анод в установке угольный. Важно соблюдение герметичности системы, ведь пары фтора ядовиты.

В лабораториях для герметичности закупают специальные пробки. Их состав: кальций-фтор. Лабораторная установка – это два медных сосуда. Первый заполняют расплавом, погружая в него второй. У внутреннего сосуда есть отверстие в дне. Через него проходит никелевый анод.

Катод располагают в первом сосуде. От аппарата отходят трубки. Из одной выделяется водород, из второй – фтор. Чтобы сохранить гермитичность, недостаточно одних пробок и фторида кальция. Нужна еще и смазка. В ее роли выступает глицерин или же оксид свинца.

Лабораторный метод получения 9-го элемента используют лишь для учебных демонстраций. Практического применения технология не имеет. Однако, ее существование доказывает, что можно обойтись и без электролиза. Однако, необходимости в этом нет.

Цена фтора

Стоимости фтора, как такового, нет. Цены устанавливаются уже на продукты с содержанием 9-го элемента таблицы Менделеева. Зубные пасты, к примеру, стоят, как правило, от 40-ка до 350-ти рублей. Лекарства, так же, есть копеечные и дорогостоящие. Все зависит от производителя, наличия на рынке аналогичного товара других фирм.

Что же касается цены фтора для здоровья, она, как видно, может быть высока. Элемент токсичен. Обращение с ним требует осторожности. Фтор способен принести пользу и даже вылечить.

Но, для этого нужно многое знать о веществе, предугадывать его поведение и, конечно, советоваться со специалистами. По распространенности на Земле фтор занимает 13-е место. Само число, называемое чертовой дюжиной, заставляет быть с элементом поосторожнее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *