Апоптоз клеток

Апоптоз клеток – противоопухолевый барьер

Важный элемент противоопухолевой борьбы – апоптоз клеток. Генетически запрограммированный механизм самоуничтожения клеточных структур с опасными мутациями сохраняет организм человека от заболеваний, но часть раковых клеток способны избежать самоликвидации, что становится важным фактором опухолевого роста.

Саморазрушение клеток запрограммировано природой

Апоптоз клеток – что это такое

В любом живом организме каждый день миллионы клеток завершают свой жизненный цикл. Природа предусмотрела практически все – старые или больные клетки должны быть удалены из органов и тканей, чтобы сохранить здоровье и целостность всего организма. Апоптоз клеток запрограммирован:

  • в отживших свой «век» тканевых структурах;
  • в генетически чужеродных клеточных образованиях;
  • для дефектных клеточных структур;
  • для клеток с мутациями;
  • в зараженных вирусами или бактериями клетках.

В каждой клетке организма имеется механизм самоуничтожения, но важнейшее свойство раковых клеток в злокачественной опухоли – возможность уклонения от программируемой смерти.

Значимость апоптоза

Самоликвидация в клетках живого организма нужна постоянно и непрерывно, начиная с эмбрионального периода: апоптоз клеток является одним из факторов предупреждения врожденных пороков и эмбриональных опухолей. В любом возрастном периоде самоуничтожение разнообразных клеточных образований и структур сохраняет внутреннее равновесие и защищает организм от болезней. Апоптоз клеток – это важная часть физиологических процессов в следующих ситуациях:

  • на фоне возрастных изменений, когда часть органов и систем приобретают или утрачивают свои основные функции;
  • при атрофии тканей;
  • при спонтанном регрессе опухоли (самоизлечении);
  • на фоне угасания детородных функций в яичниках и яичках;
  • в постоянной борьбе с мутантными и дефектными клетками.

Запрограммированная гибель множества клеток – это активный ежедневный и постоянный процесс, защищающий живой организм от смерти.

Механизм самоуничтожения клеток

Равновесие между ростом клеток (пролиферация) и гибелью (апоптозом) обеспечивается множеством взаимосвязанных физиологических процессов, которые постоянно происходят в живом организме. Апоптоз клеток состоит из 2 этапов:

  1. Обнаружение дефекта или мутации (индукция);
  2. Запрограммированная гибель (экзекуция).

Приговор исполняется специальными внутриклеточными ферментными системами: казнь происходит в максимально короткий промежуток времени с использование дублирующих механизмов, что обеспечивает необратимость и обязательность самоуничтожения.

Опухолевые клетки могут стать резистентны к генетически запрограммированному механизму самоликвидации

Апоптоз раковых клеток

Ликвидация клеточных структур с опухолевыми мутациями – это мощный фактор в борьбе с раком. Но в какой-то момент раковые клетки приобретают способность препятствовать самоуничтожению – именно с этого момента, когда апоптоз клеток перестает регулировать пролиферацию в тканях, начинает быстрый и неконтролируемый рост опухоли. Приобретенная резистентность к апоптозу – важный признак злокачественного новообразования любого происхождения и локализации. Избежав запрограммированной самоликвидации, рак начинает разрушительное действие на живой организм.

Каждый день в организме человека происходит около 1 миллиона клеточных мутаций, часть из которых могут стать раком. Апоптоз клеток защищает органы и ткани, выявляя мутантные клетки и запуская процесс экзекуции. Но опухоль-паразит однажды преодолевает защитный противоопухолевый барьер, формируя резистентность к саморазрушению и начиная быстро увеличиваться в размерах за счет инфильтративного роста.

Больше познавательных и информативных статей об онкологии на канале Яндекс.Дзен Onkos

Гибель (смерть) отдельных клеток или целых их групп постоянно встречается у многоклеточных организмов, так же как гибель одноклеточных организмов. Причины развития клеточной смерти различны. Но все их разделяют на две категории: некроз (от греч. nekrosis – омертвление) и апоптоз (от греч. корней, означающих «отпадение» или «распадение»), который часто называют программируемой клеточной смертью (ПКС) или даже клеточным самоубийством (рис. 354).

Происхождение некроза связывают с нарушением внутриклеточного гомеостаза. Некроз вызывают повреждения плазматической мембраны, подавление активности мембранных насосов под действием многих ядов, а также необратимые изменения энергетики при недостатке кислорода (при ишемии – закупорке кровеносного сосуда) или отравлении митохондриальных ферментов (действие цианидов). При повышении проницаемости плазматической мембраны клетка набухает за счет ее обводнения, в цитоплазме происходит увеличение концентрации ионов Na+ и Ca2+, закисление цитоплазмы, набухание вакуолярных компонентов и разрыв их мембран, прекращение синтеза белков в цитозоле, освобождение лизосомных гидролаз и лизис клетки. Одновременно с этими изменениями в цитоплазме изменяются и клеточные ядра: вначале они компактизируются (пикноз ядер), но по мере набухания ядра и разрыва его оболочки пограничный слой хроматина распадается на мелкие массы (кариорексис) а затем наступает кариолизис, растворение ядра. К особенности некроза относится то, что гибели могут подвергаться большие группы клеток (например, при инфаркте миокарда из-за прекращения снабжения кислородом участка сердечной мышцы). Обычно некрозный участок атакуют лейкоциты и в зоне некроза развивается воспалительная реакция (рис. ).

Апоптоз. В процессе развития организмов постоянно происходит гибель части клеток, без их физического или химического повреждения, происходит как бы их «беспричинная» смерть или апоптоз.

Гибель клеток происходит на всех стадиях онтогенеза. Многочисленны примеры отмирания клеток без повреждения при эмбриогенезе. Так отмирают клетки вольфова и мюллерова каналов при развитии мочеполовой системы у позвоночных, погибает часть нейробластов и гонадоцитов, погибают клетки при метаморфозах насекомых и амфибий (резорбция хвоста у головастика и жабер у тритона) и т.д.

Во взрослом организме миллионами погибают клетки крови, клетки эпидермиса кожи, клетки тонкого кишечника – энтероциты. Погибают фолликулярные клетки яичника после овуляции, погибают клетки молочной железы после лактации.

Множество клеток многоклеточного организма нуждается в сигналах на то, чтобы оставаться живыми. В отсутствии таких сигналов или трофических факторов в клетках развивается программа «самоубийства» или программируемой смерти.

Исследования на разных объектах показали, что апоптоз есть результат реализации генетически запрограммированной клеточной гибели. Первые доказательства наличия генетической программы клеточной смерти (ПКС) были получены при изучении развития небольшого червя нематоды Caenorhabditis elegans, который развивается всего за 3 суток.

При развитии нематоды образуется всего 1090 клеток, из которых часть нервных клеток в количестве 131 штуки спонтанно погибает путем апоптоза, и в организме остается 959 клеток. Были обнаружены два гена ced-3 и ced-4, продукты которых вызывают апоптоз 131 клетки. Если у мутантных особей эти гены отсутствуют или изменены, то апоптоз не наступает и взрослый организм состоит из 1090 клеток. Был найден и другой ген – ced-9, который является супрессором апоптоза: при мутации ced-9 все 1090 клеток погибают.

Аналог этого гена был найден у человека: bcl-2-ген также является супрессором апоптоза различных клеток. Оказалось, что оба белка, кодируемые этими генами, Ced-9 и Bcl-2, имеют один трансмембранный домен и локализуются во внешней мембране митохондрий, ядер и эндоплазматического ретикулума.

Система развития апоптоза оказалась сходной у нематоды и позвоночных животных, она состоит из трех звеньев: регулятор, адаптер и эффектор. У C.elegans регулятором является Ced-9, который блокирует адаптерный белок Ced-4, который в свою очередь не активирует эффекторный белок Ced-3, протеазу, которая действует на белки цитоскелета и ядра.

У позвоночных система ПКС более сложная. Здесь регулятором является белок Bcl-2, который ингибирует адаптерный белок Apaf-1, стимулирующий каскад активации специальных протеиназ – каспаз.

Таблица Развитие процесса программированной клеточной смерти (апоптоза)

Регулятор Адаптер Эффектор Результат Результат
C.elegans Ced-9 Ced-4 Ced-3 ПКС
Позвоночные Bcl-2 Apaf-1 Casp 9 Casp 3 ПКС

Каспазы – цистеиновые протеазы, которые расщепляют белки по аспарагиновой кислоте. В клетке каспазы синтезируются в форме латентных предшественников – прокаспаз. Существуют инициирующие и эффекторные каспазы. Инициирующие каспазы активируют латентные формы эффекторных каспаз. Субстратами для действия активированных каспаз служат более 60 различных белков. Это, например, киназа фокальных адгезионных структур, инактивация которой приводит к отделению апоптических клеток от соседей; это ламины, которые при действии каспаз разбираются; это цитоскелетные белки (промежуточные филаменты, актин, гельзолин), инактивация которых приводит к изменению формы клетки и к появлению на ее поверхности пузырей, которые дают начало апоптическим тельцам; это активируемая протеаза CAD, которая расщепляет ДНК на олигонуклеотидные нуклеосомные фрагменты; это ферменты репарации ДНК, подавление которых предотвращает восстановление структуры ДНК, и многие другие.

Одним из примеров разворачивания апоптозного ответа может являться реакция клетки на отсутствие сигнала от необходимого трофического фактора, например, фактора роста нервов (NGF) или андрогена (рис. 355). В цитоплазме клеток в присутствии трофических факторов находится в неактивной форме еще один участник реакции – фосфорилированный белок Bad. В отсутствии трофического фактора этот белок дефосфорилируется и связывается с белком Bcl-2 на внешней митохондриальной мембране и этим ингибирует его антиапоптозные свойства. После этого активируется мембранный проапоптический белок Bax, открывая путь ионам, входящим в митохондрию. В это же время из митохондрий через образовавшиеся в мембране поры в цитоплазму выходит цитохром С, который связывается с адаптерным белком Apaf-1, который в свою очередь активирует прокаспазу 9. Активированная каспаза 9 запускает каскад других прокаспаз, в том числе каспазу 3, которые будучи протеиназами, начинают переваривать мешенные белки (ламины, белки цитоскелета и др.), что вызывает апоптическую смерть клетки, ее распад на части, на апоптические тельца.

При апоптозе нарушается асимметрия плазматической мембраны и на ее поверхности появляется фосфатидилсерин, негативно заряженный фосфолипид, в норме располагающийся в цитозольной части Апоптические тельца, окруженные плазматической мембраной разрушенной клетки, привлекают отдельные макрофаги, которые их поглощают и переваривают с помощью своих лизосом. Макрофаги не реагируют на соседние нормальные клетки, но узнают апоптические. Таким образом путем избирательного фагоцитоза ткани как бы очищаются от погибших апоптозных клеток.

Апоптоз может быть вызван целым рядом внешних факторов, таких как радиация, действие некоторых токсинов, ингибиторов клеточного метаболизма, необратимые повреждения ДНК также вызывают апоптоз. Это связано с тем, что накапливающийся транскрипционный фактор, белок р53, не только активирует белок р21, который ингибирует зависящую от циклина киназу и останавливает клеточный цикл в G1 или G2 фазе (см. рис. 353), но и активирует экспрессию гена bax, продукт которого запускает апоптоз.

Повреждения митохондрий при образовании токсически активных форм кислорода (АТК), под действием которых во внутренней мембране митохондрий образуются каналы с высокой проницаемостью для ионов, в результате чего матрикс митохондрий набухает, а внешняя мембрана разрывается. При этом растворенные в межмембранном пространстве белки вместе с цитохромом С выходят в цитоплазму. Среди освободившихся белков есть факторы, активирующие апоптоз, и прокаспаза 9.

Элиминация или удаление отдельных клеток путем апоптоза наблюдается и у растений. Здесь апоптоз включает в себя, так же как у животных клеток, фазу индукции, эффекторную фазу и фазу деградации. Морфология гибели клеток растений сходна с изменениями клеток животных: конденсация хроматина и фрагментация ядра, олигонуклеотидная деградация ДНК, сжатие протопласта, его дробление на везикулы, разрыв плазмодесм и т.д. Однако везикулы протопласта разрушаются гидролазами самих везикул, так как у растений нет клеток, аналогичных фагоцитам. Так ПКС происходит при росте клеток корневого чехлика, при формировании перфораций у листьев, при образовании ксилемы и флоэмы. Опадание листьев связано с избирательной гибелью клеток определенной зоны черенка.

Биологическая роль апоптоза заключается в удалении отработавших свое или ненужных на данном этапе развития клеток, в удалении измененных или патологических клеток, особенно мутантных или зараженных вирусами.

В многоклеточном организме клетки получают сигналы на выживание, к которым относятся трофические факторы, сигнальные молекулы (гормональная, эндокринная сигнализация). Эти сигналы улавливаются рецепторными молекулами на клетках-мишенях. При отсутствии сигналов на выживание реализуется программа апоптоза.

Апоптоз: заказное самоубийство

: 10 Дек 2013 , Вслед за Создателем , том 52, №4

Само название этого типа клеточной смерти – апоптоз, что в переводе с греческого означает «падающие листья», говорит о том, что он является такой же естественной и неотъемлемой чертой многоклеточного организма, как сезонная смена листвы для деревьев. Апоптоз запускается, когда клетка имеет серьезные повреждения, ведущие к нарушению ее функций: в результате слаженной работы специальных систем, необратимо повреждающих основные клеточные структуры, такая клетка заканчивает жизнь «самоубийством».

Все клетки многоклеточных существ несут в себе потенциальную способность к апоптозу, так же как японские самураи всю жизнь носят с собой меч. И если по каким-то причинам тонкий механизм апоптоза разлаживается, последствия для организма могут оказаться самыми катастрофическими. Например, раковые клетки, блокируя систему апоптоза, приобретают бессмертие. Поэтому изучение механизмов клеточной самоликвидации является важнейшим направлением современных биомедицинских исследований: раскрытие тайн апоптоза поможет в разработке новых лекарств для борьбы с самыми тяжелыми и трудноизлечимыми болезнями современности

Каждый день и каждый час в нашем организме погибают миллионы клеток. Отшелушиваются ороговевшие клетки покровного эпителия, быстро изнашиваются и гибнут клетки слизистой ткани, выстилающей пищеварительный тракт, лейкоциты – белые клетки крови, находят свою смерть в борьбе с патогенами… Но как наше тело избавляется от специализированных клеток, когда в результате накопившихся внутренних повреждений они становятся неспособными выполнять свои функции? Одним из самых парадоксальных и удивительных механизмов, контролирующих жизнеспособность многоклеточного организма, является апоптоз – клеточная самоликвидация.

Регулярная, генетически запрограммированная гибель отдельных клеток необходима для нормального функционирования организма в целом. Все клетки многоклеточных существ обладают аппаратом апоптоза, так же как японские самураи всю жизнь носят с собой меч. Однако у этого естественного процесса есть и обратная сторона: если по каким-то причинам тонкий механизм апоптоза разлаживается, последствия для организма могут оказаться самыми катастрофическими.

Нарушения в запуске апоптоза ведут к возникновению ряда серьезных заболеваний, в том числе аутоиммунных и онкологических. Например, раковые клетки, блокируя систему апоптоза, приобретают бессмертие. Поэтому изучение механизмов клеточной самоликвидации является важнейшим направлением современных биомедицинских исследований: раскрытие тайн апоптоза поможет в разработке новых лекарств для борьбы с самыми тяжелыми и трудноизлечимыми болезнями современности.

Ферменты-киллеры

Итак, клетка выполнила свои функции, «постарела» и готова к самоуничтожению во благо всему организму. Кто же выполняет это «заказное» самоубийство?

Оказывается, в этом «детективе» про апоптоз имеются и свои затаившиеся киллеры. В этой роли выступают особые ферменты – каспазы, имеющиеся в каждой клетке (Salvesen, 2002; Nicholson, 1999; Lavrik et al., 2005). Обычно каспазы присутствуют в клеточной цитоплазме в виде неактивных предшественников (прокаспаз). Прокаспазы не проявляют никакой активности, мирно сосуществуя в клетке вместе с другими белками, однако при поступлении сигнала на самоуничтожение они превращаются в настоящие белки-убийцы.

«Смена имиджа» безобидных прокаспаз происходит так: белок расщепляется на три фрагмента, один из которых (продомен) отщепляется, а остальные соеди­няются с двумя аналогичными фрагментами другой прокаспазы. Благодаря такой структурной перестройке образуется активный гетеротетрамер каспазы, в котором аминокислоты формируют центр фермента, выполняющий каталитическую функцию (Salvesen, 2002).

Образовавшиеся активные каспазы наконец показывают свое настоящее лицо: они начинают расщеплять все белки, которые содержат остатки аминокислоты аспарагина (при условии, что рядом располагаются определенным образом остатки еще трех других аминокислот). В результате такой «подрывной» деятельности в клетке оказываются поврежденными сотни белков. К числу наиболее известных мишеней каспаз относятся белки цитоскелета (структурного каркаса клетки); белки, отвечающие за репарацию (восстановление) поврежденной ДНК; структурные белки оболочки клеточного ядра, а также ряд других жизненно важных белков. Все это приводит к нарушению всех процессов жизнедеятельности клетки.

В то же время каспазы активируют ряд белков, которые участвуют в выполнении программы самоликвидации. Например, белка, который разрезает ДНК на большие фрагменты, – этот процесс, после которого целостность ДНК необратимо уничтожается, является характерной чертой апоптоза.

Сигнал на запуск

Но каким же образом клетка узнает, что ей пора самоликвидироваться? Кто и как дает указания киллерам-каспазам?

Имеется два основных пути, по которым передаются апоптопические сигналы в виде клеточных регуляторов, таких как гормоны, антигены, моноклональные антитела и другие молекулы. Это митохондриальный (или внутренний) путь, а также через особые трансмембранные белки – так называемые рецепторы смерти (DR, от англ. death receptor). В обоих случаях для запуска апоптоза должны образоваться особые инициаторные апоптотические комплексы. Затем происходит активация так называемых инициаторных каспаз, которые, в свою очередь, активируют эффекторные (разрушающие клеточные структуры) каспазы, о которых упоминалось выше (Nicholson, 1999).

Митохондриальный путь инициируется в результате интенсивного воздействия на клетку ряда повреждающих факторов. Однако каким образом эти повреждения трансформируются в митохондриальный апоптотический сигнал, пока в деталях не установлено. Тем не менее достоверно известно, что первым шагом на этом пути является выход из митохондрий («энергетических фабрик» клетки) цитохрома С – небольшого белка, содержащего комплекс с железом, который является компонентом митохондриальной дыхательной цепи (Green et al., 2004).

Выход цитохрома С инициирует образование в цитоплазме клетки крупного белкового комплекса – апоптосомы, в которую, помимо самого митохондриального белка, входят прокаспаза-9 и белок АПАФ-1. Именно апоптосома и является настоящим «мафиозным боссом» митохондриального пути апоптоза, который дает сигнал киллерам-каспазам.

Речь идет об очень интересном явлении – самоактивации прокаспазы. Такое может произойти лишь в том случае, когда две молекулы этого белка, ориентированные определенным образом относительно друг друга, образуют димер. Именно такие уникальные пространственные условия, необходимые для димеризации и каталитической активации фермента, и предоставляет прокаспазе-9 апоптосома. Образовавшаяся в результате активная каспаза-9 расщепляет эффекторные каспазы (каспазу-3 и каспазу-7), а дальше все происходит по стандартной схеме апоптоза (Green et al., 2004).

В случае рецептор-зависимого сигнального пути инициация апоптоза начинается с другого белкового комплекса, который образуется непосредственно на самом рецепторе смерти (Krammer et al., 2007; Lavrik et al., 2005).

К настоящему времени семейство таких рецепторов включает шесть представителей, в том числе рецептор такого широко известного белка, как фактор некроза опухоли. Все рецепторы смерти имеют одинаковый фрагмент из 80 аминокислот – так называемый домен смерти, расположенный на белковом «хвостике», выходящем в цитоплазму клетки. Такой же аминокислотный фрагмент имеет и белок-адаптер FADD, находящийся в цитоплазме клетки. Домены смерти могут взаимодействовать между собой с образованием устойчивой связи; FADD, в свою очередь, способен присоединять к себе прокаспазу.

Вся цепь событий по образованию апоптотического комплекса запускается лигандом смерти – белком-агонистом, способным специфично связываться с рецептором смерти. Синтез (и, соответственно, рост концентрации) таких молекул в клетке стимулируется каскадом процессов, возникающих в ответ на повреждение клетки. В результате, благодаря посредничеству FADD, на рецепторе образуется комплекс DISC (от англ. death-inducing signaling complex), что в дословном переводе означает «сигнальный комплекс, инициирующий гибель». Именно в этом комплексе, как и в апоптосоме, происходит самоактивация прокаспазы-8, которая, в свою очередь, активирует эффекторные каспазы (каспазу-3 и каспазу-7) и инициирует клеточную гибель (Lavrik et al., 2005; Krammer et al., 2007). Собственно говоря, на этом различия между запуском двух сигнальных путей апоптоза заканчиваются.

Жить или не жить?

Нужно отметить, что любая клетка организма постоянно подвергается многочисленным повреждающим воздействиям, таким как радиационное излучение разных типов, разнообразные химические агенты, недостаток питательных веществ и т. п. К счастью для нас, для полноценной инициации клеточной гибели необходимо сравнительно сильное воздействие. На страже апоптотических путей стоят специфические механизмы, играющие роль «регулировщиков движения». Эту роль играют особые белки XIAPs и FLIP (Lavrik et al., 2005).

Белки XIAPs ингибируют каспазу-9, которая активируется вследствие развертывания митохондриального пути. Связываясь с активным центром каспазы, они не дают «киллеру» выполнять свою работу. Однако с помощью этих белков клетке удается заблокировать лишь небольшое число активных каспаз. Если же концентрация активных каспаз превышает некий пороговый уровень, то белков XIAPs становится недостаточно, и процесс апоптоза остановить уже невозможно.

В случае рецепторзависимого сигнального пути апоптоза ингибитором активации прокаспазы-8 служит близкий ей по структуре белок FLIP. Молекулы этого белка также могут связываться с апоптическим комплексом DISC, конкурируя за «место» с молекулами прокаспазы, – при повышенной концентрации в цитоплазме они блокируют все возможные «места» такого связывания (Krammer et al., 2007). В результате прокаспаза-8 не может быть активирована, и апоптоз не запускается.

Нарушения в уровне экспрессии как про- так и антиапоптотических белков может привести к серьезным отклонениям от обычного образа жизни клетки. Так, повышенный уровень экспрессии белков XIAPs и FLIP имеют многие раковые клетки. Выбрав курс на собст­венное бессмертие, в конечном счете они приводят к гибели все многоклеточное «сообщество» организма.

Итак, в отличие от голливудского детектива, в истории про апоптоз нет главного действующего лица: своевременное уничтожение поврежденных клеток и в итоге – жизнеспособность организма зависит от слаженной цепочки событий, в которой участвует множество различных белковых молекул.

И здесь очень важны количественные показатели, такие как концентрация. Сегодня изучением того, как влияет на инициацию и дальнейший ход апоптоза уровень содержания в клетке различных молекул, занимается одна из передовых областей современной науки – системная биология (Bentele et al., 2004). Основной ее постулат заключается в том, что протекание сложных процессов внутри клетки можно понять, лишь учитывая максимально большое число клеточных параметров. Для этого на основе экспериментальных данных создается компьютерная модель, которая учитывает действие множества факторов. Полученные таким образом предсказания о ходе основных клеточных процессов могут использоваться в борьбе с препятствиями человечества на пути к долгой и здоровой жизни.

Литература

Программируемая гибель клеток — медицине

Борис Животовский,
доктор биологических наук, профессор, Каролинский институт (Стокгольм), МГУ им. М. В. Ломоносова
«Химия и жизнь» №5, 2014

«Программируемая гибель? А, это называется апоптоз», — скажет просвещенный читатель. На самом деле апоптоз — лишь один из многих видов программируемой клеточной смерти. Создавая сложные структуры и поддерживая их существование, природа, как Микеланджело, постоянно отсекает лишнее; клетки должны умирать, чтобы жил организм. И подобно всем жизненно важным биологическим процессам, программируемая гибель клеток — ключ к лечению многих заболеваний.

Статья написана по материалам лекции, прочитанной автором на Зимней научной школе «Современная биология и биотехнологии будущего».

Борис Животовский. Фото Алексея Паевского

39 километров кишечника

Гибель клетки может быть пассивным или активным процессом. Пассивный — смерть от повреждений, которые клетка неспособна починить. Активный процесс имеет место, когда клетка выполнила свою функцию и должна уйти со сцены, уступить дорогу другим клеткам. Характерный пример — эмбриональное развитие: формирование органа в растущем организме происходит не только за счет роста и деления клеток, но и за счет удаления «лишних». Впрочем, и после повреждения может включаться активный процесс гибели: «плановое» устранение бывает предпочтительнее неуправляемого распада.

Любая популяция клеток регулируется тремя процессами, одинаково важными: деление, дифференцировка — превращение молодых клеток в зрелые (при этом их количество может как увеличиваться, так и уменьшаться) и гибель клеток. Тело взрослого человека состоит из десятков триллионов клеток, и ежедневно каждый из нас теряет десятки миллиардов из них, в пересчете на вес — примерно килограмм. Само собой разумеется, потерю восполняют новые клетки, так что мы не теряем по килограмму в день. (Кстати, жировые клетки, которым желают погибели многие худеющие, с возрастом могут прибавляться в числе, а умирают неохотно.) Все мы знаем, как слущивается и обновляется поверхностный слой кожи — эпидермис. В числе наиболее активно гибнущих — клетки эпителия кишечника: на протяжении жизни человека они заменяются примерно 4000 раз. Если бы старые клетки не погибали, то за 70 лет наш кишечник достиг бы длины 39 км! Активно обновляются и клетки костного мозга — за те же 70 лет организм производит их около трех тонн. Еще один пример — тимус, в котором рождаются и созревают клетки иммунной системы. Примерно 90% тимоцитов — так называют лимфоциты, пока они находятся в тимусе, — в нем же и погибают, и лишь 10% выходит за его пределы.

В индивидуальном развитии человека или любого другого существа тоже не обойтись без программируемой гибели клеток. Хрестоматийный пример апоптоза — исчезновение хвоста у головастика; интересно, что этот процесс вместе с другими метаморфозами регулируется изменением уровня тироидного гормона в крови. А чтобы у животного сформировались пальцы на лапе, должны исчезнуть клетки, расположенные между зачатками пальцев (рис. 1). Программируемая гибель клеток участвует и в созревании половых органов, и в развитии мозга. Погибшие при апоптозе клетки организма должны быть съедены соседними клетками либо макрофагами — профессионалами пожирания. Благодаря этому апоптоз почти никогда не сопровождается воспалением. Подробнее об этом можно прочитать в недавно опубликованных статьях (H. Yamaguchi et al., 2014, Apoptosis: Keeping inflammation at bay, eLIFE, 3:e02172; D. Wallach, A. Kovalenko, 2014, Apoptosis: Keeping inflammation at bay, eLIFE, 3:e02583).

Рис. 1. Апоптоз во время нормального развития конечности мыши. Клетки, подвергшиеся апоптозу, ярко окрашены. Справа — та же конечность день спустя (W. Wood et al., “Development”, 2000, 127:5245–5252)

Очевидно, что смерть клеток должна строго регулироваться, они должны погибать в определенное время и в определенном месте, иначе в организме воцарится хаос.

Бабочка и червь

Феномен программируемой гибели клеток известен уже более ста лет, но до середины прошлого века он почти не привлекал внимания ученых. Автором термина «программируемая клеточная смерть» стал американский клеточный биолог Ричард Локшин. В середине 60-х годов прошлого века он был аспирантом у Кэрролла Уильямса в Гарвардском университете и, по его собственным рассказам, уже начинал волноваться — четыре года в аспирантуре, и все еще никаких публикаций! Однако в 1964–1965 годы вышло сразу пять статей Локшина и Уильямса под общим названием “Programmed cell death”. Объектом их исследований был шелкопряд — в метаморфозе бабочки удаление «ненужных» структур совершенно необходимо.

Важную роль в развитии этого направления сыграла работа доктора Таты (J. R. Tata, C. C. Widnell, Biochemical Journal, 1966, 98, 604–620), который показал, что процесс гибели клеток требует синтеза РНК и белков. Это значило, что гибель бывает не случайной, а генетически детерминируемой, происходящей «по свободному выбору» клетки или организма.

Тогда же, в 60-е, биолог Сидней Бреннер, выходец из Южной Африки, работавший в Великобритании, предложил новый модельный объект для исследования индивидуального развития организмов — червячка Caenorhabditis elegans, обитающего в почве. Эти крошечные существа интересны тем, что тела взрослых особей состоят из строго определенного числа клеток, участь каждой из которых предопределена. Через четыре десятилетия, в 2002 году, Сидней Бреннер вместе с Робертом Хорвитцом и Джоном Салстоном получили Нобелевскую премию по физиологии или медицине за идентификацию генов нематоды, контролирующих развитие органов и программируемую гибель клеток.

С другой стороны, медицине еще в XIX веке были известны явления, которые мы теперь называем апоптозом (например, редукция эпителия матки во второй половине менструального цикла). В 1965 году этой темой заинтересовался австралийский патолог Джон Керр из Квинслендского университета. Исследуя электронно-микроскопические препараты тканей, он обнаружил картину клеточной смерти, принципиально отличную от некроза. Позднее он приехал на саббатикал в Шотландию, в Абердинский университет, по приглашению Аластора Карри — одного из самых известных патологов того времени. (Слово «саббатикал» в данном случае можно перевести на русский как «творческий отпуск».) Результатом их совместной работы стала знаменитая ныне статья «Апоптоз как фундаментальный биологический феномен с множественными функциями в регуляции кинетики тканей». Третьим соавтором был Эндрю Уайли, аспирант Карри. Термин «апоптоз» авторам предложил Джеймс Кормак, профессор греческого языка в Абердинском университете. Это слово может быть переведено как опадание листьев, лепестков, но его также употребляли Гиппократ и Гален, обозначая отмирание и потерю ненужных организму частиц.

Любопытно, что трое соавторов посылали свою статью в ведущие журналы того времени и везде ее отклоняли, оценивая тему как малоинтересную. Карри был членом редколлегии British Journal of Cancer, и он уговорил редактора принять статью к публикации (Kerr, Wyllie, Currie, 1972, 26, 4, 239–257, DOI:10.1038/bjc.1972.33). Это «любезное одолжение» в дальнейшем сильно увеличило импакт-фактор журнала — статью цитировали тысячи раз и продолжают цитировать по сей день. В настоящее время эта тематика никому не кажется бесперспективной. По моим подсчетам, каждые 24 минуты появляется новая публикация, включающая термины «апоптоз», «некроз», «аутофагия» или «программируемая гибель клеток».

Пересадки на путях гибели

Исследование программируемой клеточной смерти имеет не только фундаментальное, но и прикладное значение: сегодня это важный аспект клинической медицины. Причиной многих хронических заболеваний оказались изменения в регуляции процесса гибели клеток. Изменения могут иметь генетическое или иное происхождение, но, так или иначе, патология характеризуется избыточной гибелью клеток или выживанием дефектных, которые должны были погибнуть. К первой категории относятся некоторые нейродегенеративные, гематологические, иммунные, инфекционные и метаболические заболевания. Вторая категория — появление в организме «лишних», потенциально дефектных клеток — это прежде всего опухоли и предопухолевые состояния, но также аутоиммунные, инфекционные, метаболические и гематологические заболевания. Для понимания патофизиологии этих многочисленных заболеваний принципиально важно узнать, из-за чего и где произошел сбой.

Механизмы регуляции клеточной смерти оказались весьма сложными, и, несмотря на колоссальный прогресс в этой области, многое остается непонятным. Необходимо детально разобраться в сигнальных путях, приводящих к гибели клетки. Сейчас считается, что существует основной, сердцевинный (коровый) путь с ответвлениями, которые ведут или к специфическим механизмам гибели клеток в отдельных тканях, или к патологиям.

Номенклатурный комитет по исследованию гибели клеток, в который я имею честь входить, по совокупности морфологических и биохимических изменений выделил четыре типичных вида клеточной смерти — апоптоз, некроз, аутофагию и корнификацию (ороговение), а также восемь атипичных видов. Каждый из них протекает по своему пути. При этом нельзя сказать, что типичные важнее атипичных, они просто лучше изучены.

Во второй группе есть по крайней мере два типа гибели, которые известны всем если не по названию, то как явление. Например, когда молодая мать перестает кормить младенца и объем груди уменьшается, клетки молочной железы гибнут по специфическому пути, который называется аноикис. Другой пример — митотическая катастрофа, массовая гибель клеток, которая наблюдается после несильного радиационного воздействия, а также после некоторых других стрессовых факторов, например химиотерапии. При этом клетка «застревает» в одной из фаз деления (митоза), а затем либо может бесконтрольно расти и увеличивать свой объем, либо погибает. И хорошо, что погибает: клетке с нарушенным хромосомным набором лучше сойти со сцены.

Митотическая катастрофа была описана еще в 80-е годы ХХ века, однако не было понятно, в частности, считать ли ее разновидностью программируемой смерти или пассивной гибелью из-за «поломки». Внести ясность посчастливилось двум лабораториям — нашей в Каролинском институте и коллег из Франции. Моя аспирантка Хелин Вакифахметоглу выяснила, что митотическая катастрофа может протекать либо в виде апоптоза, либо в виде некроза, в зависимости от того, какие белки экспрессируются в той или иной ткани, и это не просто поломка, а именно программируемое событие (Vakifahmetoglu H., Olsson M., Zhivotovsky B., “Death through a tragedy: mitotic catastrophe”, Cell Death and Differentiation, 2008; 15: 1153–1162). Исследования в данном направлении продолжаются в нашей лаборатории в МГУ.

Самое интересное, что между путями гибели клеток имеются своего рода пересадочные станции, и это еще усложняет картину, делая ее похожей на схему метрополитена в мегаполисе вроде Нью-Йорка или Москвы. Почему в разных клетках и тканях работают различные формы гибели, что нужно сделать, чтобы, скажем, раковая клетка, у которой заблокирован один из путей гибели, «сделала пересадку» и направилась по другому пути, — все эти вопросы изучаются в настоящее время.

Несколько лет назад Европейский союз выделил 12 миллионов евро на поддержку исследовательского проекта, в котором участвовали биологи- экспериментаторы, врачи, специалисты по математическому моделированию из 12 стран. Мне посчастливилось руководить этим проектом. Его задачей было исследовать сигнальные пути, ведущие к апоптозу и другим типам гибели клеток при ВИЧ-инфекции и онкологических заболеваниях, в частности раке легких, а также в нормальных клетках. (Выбор пал на эти заболевания не только из-за их большой значимости: при СПИДе наблюдается избыточная гибель клеток, при раке — недостаточная.) Эксперименты проводили на клеточных культурах человека, на модельных организмах — дрожжах, нематоде C. elegans и мышах, выполняли также клинические испытания. Проект завершился в 2013 году; в результате удалось получить тесты для выявления патологий и разработать подходы к новым методам терапии.

Что касается теоретического выхода — итоговая схема путей клеточной гибели (рис. 2) довольно сложна, и рассказать о ней полностью в короткой статье невозможно. И все же нетрудно заметить, что перспективных мишеней для воздействия довольно много (на схеме они обозначены минусами). На этих этапах клеточную смерть можно остановить или, если заменить минусы плюсами, ускорить.

Рис. 2. Схема путей, по которым сигнал апоптотической гибели доходит до митохондрий и дальше распространяется по клетке, заканчиваясь распадом хроматина и фрагментацией ядра. Важную роль в прохождении апоптотического сигнала играет активация каспаз, семейства протеолитических ферментов.
Hsp — белки теплового шока, Cyt. c — цитохром c; подробнее о каспазах, белках семейств Bcl-2, IAP, а также SMAC, иначе называемом Diablo, см. в тексте

Каспазы, «страж генома» и другие

Одна из сложностей состоит в том, что белки, участвующие в регуляции гибели клеток, выполняют и другие функции. Это и понятно: трудно представить, чтобы рациональная природа создала специальную систему исключительно для умерщвления клеток. По логике вещей, составляющие этой системы должны в норме делать какую-нибудь полезную работу, а при необходимости мобилизоваться, чтобы убрать патологические клетки. Такая многофункциональность усложняет терапию: воздействуя на звено апоптозного пути, важно не помешать работе этого компонента в нормальной ткани.

Почетное место в апоптотической форме клеточной гибели занимают каспазы — семейство из тринадцати белков, разделенных на две группы, которые участвуют в развитии апоптоза или воспаления. Каспазы относятся к протеазам — ферментам, расщепляющим другие белки, причем результаты этой их активности могут быть самыми разными, даже когда речь идет об одном и том же ферменте, но в разных тканях и при различных условиях. Так, при окислительном стрессе каспаза 1 расщепляет интерлейкин 1В, превращая его в активную форму. (Интерлейкины играют центральную роль в иммунных и воспалительных процессах.) Это может быть причиной ишемии в клетках печени и миокарда; на клеточном уровне происходит апоптоз, который в случае нарушений фагоцитоза может трансформироваться в некроз. В печеночной ткани та же каспаза может расщепить белок, приводя к переключению апоптотической программы в аутофагическую, а затем и к геморрагическому шоку. С другой стороны, если полностью убрать этот белок, это вызывает гибель клеток печени по типу некроза.

В 1990–2000-е годы многие фармацевтические фирмы вкладывали огромные деньги в разработку ингибиторов каспаз. Теперь практически все прекратили работу в этом направлении, поскольку ингибиторы оказались токсичными, — именно потому, что блокируют нормальную функцию каспаз в клетках. В настоящее время ингибиторы каспаз используют лишь в экстренных ситуациях, например при остром циррозе печени, когда необходимо как можно скорее остановить разрушение ткани. Другой пример — такое тяжелое заболевание, как болезнь Крона: хроническое воспаление всех отделов желудочно-кишечного тракта, от полости рта до прямой кишки, с образованием свищей, инфекционными осложнениями и прочими проблемами. При лечении болезни Крона (а также ревматоидного артрита и язвенного колита) хорошо показал себя препарат инфликсимаб, в России известный как ремикейд, — он действует как раз через каспазу-1.

Белки семейства IAP — ingibitors of apoptosis proteases — в соответствии с названием, ингибируют апоптотические протеазы, то есть каспазы, тем самым выключая апоптоз. В нормальных клетках белки IAP может обезвредить митохондриальный белок SMAC (second mitochondria-derived activator of caspases) — он выходит из митохондрий, соединяется с IAP и убирает их функцию. Логично было использовать этот эффект для терапии. И действительно, низкомолекулярные миметики SMAC (небольшие молекулы, имитирующие функцию этого белка) показали себя достаточно эффективными при терапии глиомы — опухоли мозга (рис. 3). По некоторым обмолвкам врачей в российских СМИ можно предположить, что подобными препаратами (но, конечно, не только ими) лечили в США певицу Жанну Фриске.

Рис. 3. Подобные SMAC вещества (пептиды или низкомолекулярные органические соединения) делают злокачественную опухоль мозга — глиому чувствительной к терапии белком TRAIL, цитокином из семейства факторов некроза опухолей, а также к многим химиотерапевтическим препаратам (не указаны на рисунке). Только при их совместном действии глиома в мозге подопытных мышей исчезает полностью, ее клетки гибнут по пути апоптоза (S.Fulda et al, Nature Medicine, 2002, 8 (8), 808–815, DOI:10.1038/nm735). В настоящее время данные миметики SMAC находятся на третьей фазе клинических испытаний

Следующий важный элемент схемы — Bcl-2. Перенос его гена с одной хромосомы на другую (транслокация) ассоциируется с лимфомой В-клеток. Отсюда название белка и его гена — аббревиатура B cell lymphoma. В 80-е годы ХХ века австралийский биолог Дэвид Во с коллегами показал, что этот белок работает как антиапоптотический, препятствуя гибели В-клеток; вскоре это подтвердили и другие исследователи. Таким образом, впервые было доказано, что белки, участвующие в негативной регуляции гибели клеток, могут работать как онкогены: если апоптоз блокирован и дефектные клетки не погибают, заболевание развивается.

С этой публикацией связана интересная история. Дэвид Во в то время был аспирантом в Институте медицинских исследований Уолтера и Элизы Холл в Мельбурне. Его научный руководитель, доктор Сьюзен Кори, результаты Дэвида по Bcl-2 встретила холодно. Но Дэвид, будучи упорным человеком, отправился за поддержкой к своему второму руководителю — доктору Джерри Адамсу, и тот решил, что работа заслуживает внимания. Интрига заключалась в том, что второй руководитель был мужем первого. Итогом рабочих и, возможно, внерабочих дискуссий стала совместная публикация руководителей и аспиранта (D. L. Vaux, S. Cory, J. M. Adams, Nature, 1988, 335, 440–442).

Сейчас известно целое семейство белков Bcl-2 — регуляторов апоптоза, названное в честь первого такого белка. Одни из них подавляют гибель клетки, другие ее активируют, причем последние разделяются на две группы. Это создает проблемы при лекарственном воздействии на них. Делались попытки, например в компании «Genentech», выключить ген Bcl-2 с помощью антисмысловой ДНК или РНК. (Понятно, что, если удалить из клетки антиапоптотический белок, должен развиться апоптоз.) На клетках в культуре все получалось отлично, но, когда перешли к экспериментам на животных, оказалось, что клетки по-прежнему нечувствительны к гибели, хотя уровень белка-мишени падает — его замещает другой белок семейства. При использовании антисмысловых молекул к двум белкам повысился уровень третьего… Нужно было искать другие подходы.

Белок еще более знаменитый, чем Bcl-2 и каспазы, — антионкоген р53, который часто называют «стражем генома». У него много функций, но то, что знают о нем все, — р53 активируется в ответ на стрессовые стимулы и другие факторы, способные привести к мутациям в ДНК, и включает гибель клетки. Мутации в гене этого белка часто бывают связаны с онкологическими заболеваниями. Нормальный же белок p53 заставляет клетку погибнуть в апоптозе, убирая антиапоптотическую функцию Bcl-2. Следовательно, если причина онкологического заболевания — мутация в p53, потенциально хорошим лекарством будет вещество, которое выключало бы функцию белков семейства Bcl-2. Нет активности антиапоптотических белков — есть апоптоз, и р53 уже не нужен.

Такие соединения действительно существуют. Первое из них, под названием ABT 737, в середине прошлого десятилетия было получено американской фармацевтической корпорацией “Abbott Laboratories”. Более совершенный «потомок» этого препарата, ABT 199, активный при лейкемии и лимфоме В-клеток, сейчас проходит третью фазу клинических испытаний.

Конечно, при проблемах с р53 можно использовать не только этот подход. Все варианты трудно перечислить: используется и генная терапия — внедрение гена нормального р53 в аденовирусном векторе, и целенаправленное уничтожение клеток, дефектных по этому гену. Перспективны для применения в клинике и активация нормального, но «спящего» р53, и реактивация мутантного белка. Уже имеются низкомолекулярные соединения, которые воздействуют на различные участки (домены) р53 и восстанавливают его функцию. Формулы двух таких молекул, PRIMA-1 и RITA, впервые исследованных в Каролинском институте, под руководством Галины Селивановой и Класа Вимана, представлены на рисунке. Я совместно с Класом Виманом работал с соединением PRIMA-1, восстанавливающим функцию мутантного р53, и нам удалось показать, что в зависимости от ситуации он может вызывать или апоптоз, или аутофагию.

В настоящее время большое значение придается изучению медицинских аспектов явления аутофагии — «самопожирания» клетки. При аутофагии внутренние структуры клетки доставляются в лизосомы — пузырьки с ферментами, расщепляющими биомолекулы, и там разрушаются. Впервые аутофагию описал в 1963 году бельгийский биолог Кристиан де Дюв, лауреат Нобелевской премии 1974 года по физиологии или медицине (см. «Химию и жизнь», 2013, №11). Аутофагия сама по себе — сложное явление, в разных случаях она управляется различными механизмами.

Интересно, что аутофагия в опухоли может как подавлять ее развитие, так и способствовать ему. Однако совокупность последних данных говорит о том, что можно заставить аутофагию работать только на гибель опухоли. Не исключено, что удастся как-то использовать связь между аутофагией и апоптозом, переключения между этими двумя маршрутами.

Возможности аутофагии в борьбе с онкологическими заболеваниями наши лаборатории в МГУ и в Каролинском институте изучают совместно с клиницистами из Российского онкологического научного центра имени Н. Н. Блохина. Идея выглядела парадоксально: не стимулировать, а подавить аутофагию в клетках опухоли. Известно, что при этом в клетке накапливаются активные формы кислорода (АФК) и она становится более чувствительной к инициации процесса гибели. Мы попытались проверить это на практике и убедились, что идея работает: ингибирование аутофагии на определенных участках привело к накоплению АФК, и, если в этот момент подействовать специфическими противоопухолевыми препаратами, можно эффективно убить опухоль. Замечу, что эта работа была выполнена только на аденокарциноме легкого, мы не проверяли результаты ни на каких других видах новообразований, и наше представление о механизме пока остается рабочей гипотезой.

«Работайте старательно, но быстро»

Из всего сказанного выше следует важный вывод: когда вы слышите о волшебном препарате, который «лечит все виды онкологии», то можете быть уверены, что это блеф. Рак нельзя вылечить одним-единственным препаратом, потому что у него нет одной-единственной причины. Это системное заболевание, и, чтобы бороться с ним, необходимо полностью проанализировать систему, понять, что и где неправильно работает. Только при комплексном лечении удается достичь результатов. Например, ABT 199 действительно эффективен против В-клеточной лимфомы, но, чтобы полностью убить опухоль, его назначают в комплексе с другими веществами. И важно определить, какие препараты следует применять в каждом конкретном случае.

Характерный пример — рак легкого. Это название объединяет по крайней мере четыре разных заболевания: мелкоклеточный и немелкоклеточный рак, который, в свою очередь, делится еще на три вида: аденокарциному, плоскоклеточный и крупноклеточный рак. Это деление отнюдь не формальное: у них абсолютно разные генетические основы, биохимия, этиология, общего — только локализация в легком. Конечно же и лечить их нельзя одинаково.

Нужно учитывать еще и такой фактор, как индивидуальная чувствительность больных к терапии. Около 15 лет назад в США был создан препарат для лечения аденокарциномы и других немелкоклеточных раков, получивший название Иресса (гефитиниб). Испытания на клетках в культуре и на животных показали хорошие результаты, и, поскольку рак легких очень распространен в Японии, американское Агентство по контролю пищевых продуктов и лекарств (FDA) решило проводить третью фазу клинических испытаний именно там. Примерно треть пациентов с аденокарциномой легкого отвечала на терапию — великолепное достижение. Но когда FDA допустило этот препарат к применению в США, произошло фиаско: эффект был всего у 2% больных. Дело в том, что Иресса — ингибитор рецептора эпидермального фактора роста EGF, известного как онкоген, а при аденокарциноме могут быть мутации в гене этого белка. В Японии определенная мутация, ранее не известная, встречалась у 30% пациентов, а в Америке приблизительно у 2% — им-то и помогал препарат. Не случайно Евросоюз поддерживает сейчас большую программу персональной медицины. Программа весьма дорогостоящая, но без нее не продвинуться вперед.

Хотя пока не приходится говорить о полной победе над раком, в последние годы достигнуты большие успехи, в том числе благодаря исследованиям в такой «неприкладной» области, как программируемая гибель клеток. Поэтому более чем странно слышать от компетентных лиц, занимающих высокие посты, что в задачи Министерства здравоохранения РФ «не входит исследование фундаментальных аспектов медицины». Не будет фундаментальных исследований — не будет и практических результатов. Но разумеется, одной фундаментальной науки недостаточно. Путь от идеи до разрешенного к применению лекарства — скрининг, оптимизация, выбор среди кандидатов, все необходимые тесты, затем клинические испытания — при самых благоприятных условиях займет примерно десять лет и обойдется в миллиард долларов. Таковы общемировые тенденции, и на этом не стоит экономить: цена ошибки может быть слишком высокой.

В заключение я хотел бы передать молодым читателям совет, который сам услышал, когда был аспирантом третьего года обучения. В те годы в Ленинграде жил и работал академик Евгений Михайлович Крепс, директор Института эволюционной физиологии и биохимии имени И. М. Сеченова. Это был очень своеобразный и безумно интересный человек. B 1937 году его арестовали за якобы «вредительскую деятельность в пользу ряда западных государств», несколько лет он провел в лагерях. Однако случилось чудо: после вмешательства академика Л. А. Орбели Евгений Михайлович был освобожден по пересмотру дела «ввиду отсутствия состава преступления», вернулся в Ленинград и продолжил занятия наукой. Я пришел к нему, чтобы попросить представить нашу статью в журнал «Доклады Академии наук СССР». Евгений Михайлович сказал: хорошо, я посмотрю и вам позвоню. Честно говоря, я не особенно надеялся на это, слишком суров был его взгляд. Однако день спустя действительно раздался звонок, он пригласил меня к себе и попросил объяснить, что такое гибель клеток. Я объяснил, как мог. Особенно Евгению Михайловичу понравилось то, что патофизиологию некоторых неврологических заболеваний возможно будет объяснить феноменом программируемой гибели клеток, хотя в то время подобных работ было совсем мало. Он согласился представить статью, которая затем благополучно вышла в журнале. И сказал такую фразу: «Знаете, Боря, вы молодой, но время летит. Одному ученому хватит лет тридцать — сорок, чтобы стать академиком или даже лауреатом Нобелевской премии, а другому может понадобиться для этого лет двести, если он доживет. Поэтому работайте быстро, но старательно». Причины, по которым придется ждать и откладывать задуманное, найдутся всегда. Но следует избегать промедлений там, где это зависит от нас.

Каждый день в организме погибает большое количество клеток, а на смену им образуется равное количество новых: таково условие для поддержания клеточного гомеостаза. Удалить необходимо ненужные, старые и потенциально опасные. Одним из известных механизмов клеточной гибели является апоптоз, представляющий собой программируемый процесс.

Иначе можно сказать, что смерть клетки происходит согласно контролируемой «суицидальной» программе, регулируемой на генетическом уровне. Кроме того, апоптоз характеризуется «аккуратностью» (в отличие от некроза): мембрана погибшей клетки остается целой, и, следовательно, содержимое клетки не покидает ее границ, а воспалительная реакция не активируется. Этот механизм имеет важное значение для медицины, так как лежит в основе развития многих заболеваний.

Когда активируется апоптоз?

Физиологические ситуации:

  • Разрушение клеток в процессе эмбриогенеза. Начальный этап развития организма сопровождается образованием избыточного клеточного материала, уничтожение которого происходит путем апоптоза в строго определённых местах и времени. Иначе говоря, гистогенез и органогенез тесно связаны с активацией апоптоза. Пример: удаление перепонок между зачатками пальцев.
  • Инволюция гормонозависимых тканей после прекращения гормональной стимуляции. Пример: разрушение эндометрия во время менструального цикла, атрофия яичников в период менопаузы, постлактационное уменьшение молочной железы и атрофия простаты после кастрации.
  • Ликвидация потенциально опасных лимфоцитов, которые могут реагировать на собственные ткани.
  • Смерть клеток, которые уже послужили во благо организму. Например, гибель нейтрофилов при остром воспалительном ответе и лимфоцитов в конце иммунного ответа.

Патологические ситуации:

  • Поврежденная ДНК. Радиоактивные и цитотоксические противоопухолевые препараты, а также гипоксия могут повредить ДНК либо напрямую, либо через производство свободных радикалов. Если система репарации не может справиться с повреждением, то клетка активирует внутренние механизмы, которые индуцируют апоптоз. Это является лучшей стратегией, так как существует риск злокачественного перерождения клеток.
  • Накопление неправильно сложенных белков в эндоплазматическом ретикулуме. Это явление называется эндоплазматическим стрессом. Неправильно сложенные белки могут появится из-за мутаций в генах или при повреждениях свободными радикалами. Апоптоз, возникающий в результате таких накоплений, наблюдается, например, при нейродегенеративных заболеваниях (болезнь Альцгеймера, Паркинсона и др.).
  • Гибель клеток при вирусных инфекциях. Потеря инфицированных клеток также обусловлена апоптозом, который может быть вызван вирусами (при аденовирусной и ВИЧ-инфекциях) или иммунной системой хозяина (при вирусном гепатите). За последнее отвечают цитотоксические Т-лимфоциты, которые убивают инфицированные клетки, устраняя резервуары инфекционного заболевания. Этот же механизм, опосредованный Т-клетками, наблюдается при гибели опухолевых клеток и при отторжении трансплантата.

Внутриклеточный протеолитический каскад

Активируют апоптоз внутриклеточные ферменты — каспазы (caspases). Они относятся к классу протеолитических ферментов (протеазы), так как расщепляют пептидные связи в белках. Буква «с» в «caspases» указывает на то, что в активном центре протеаз находится аминокислота цистеин, «asp» — на то, что расщепление последовательности аминокислот происходит после остатка аспарагиновой кислоты. Каспазы в клетке находятся в неактивной форме (в виде проферментов) и активируются только в процессе апоптоза.

Существует два класса каспаз: инициаторные (каспазы-2, -8, -9 и -10) и эффекторные (каспазы-3, -6 и -7). Первые отвечают за начало апоптоза, вторые же регулируют расщепление клеточных компонентов. Процесс развивается, как каскад, то есть состоит из нескольких ферментативных реакций. Субстратом на каждой стадии является белок, который в результате реакции превращается в активный фермент. Этот фермент в свою очередь использует другой белок в качестве субстрата, превращая его в активный фермент. И так повторяется несколько раз.

Каспазами разрушается множество белков, среди которых белки ядерной пластинки и белок-ингибитор активности эндонуклеазы. Расщепление последнего ведет к тому, что эндонуклеаза начинает разрезать ДНК. Разрушаются белки цитоскелета и клеточной адгезии, которые соединяют клетки друг с другом. Такой каспазный каскад необратим.

Рисунок 1 | Разрушение каспазой ингибитора эндонуклеазы и последствия. Апоптоз может протекать по двум различным путям — по внешнему и внутреннему (митохондриальному)

Внешний путь апоптоза

Этот путь запускается при связывании лиганда с рецептором смерти, находящимся на плазматической мембране различных клеток. Рецепторы смерти (death receptors — DR) бывают нескольких видов: TNF-R1, FAS (CD95), DR3, TRAIL-R1, TRAIL-R2 и др. Все они трансмембранные белки, содержащие внеклеточную часть — лиганд-связывающий домен — и внутриклеточную часть — домен смерти.

Иллюстрация такого пути — взаимодействие Fas рецептора на поверхности многих типов клеток с Fas-лигандом на цитотоксическом лимфоците. Домен смерти активированного рецептора объединяется с внутриклеточными белками FADD (Fas-associated death domain). Они в свою очередь объединяются с инициаторными каспазами, образуя сигнальный комплекс, вызывающий смерть (death-inducing signaling complex — DISC). Этот комплекс активирует инициаторные каспазы, которые затем включают в работу эффекторные каспазы, что дает начало апоптозу.

Существует ингибиторный белок, ограничивающий внешний путь. Этот белок называется FLIP. Он похож на инициаторную каспазу, но не обладает ее функцией. FLIP с каспазой-8 образует DISC, однако каспаза-8 не становится активной и апоптотический сигнал блокируется. Этот тормозный механизм помогает предотвратить нежелательную активацию внешнего пути.

Рисунок 2 | Внешний путь апоптоза

Внутренний путь апоптоза зависит от митохондрий

Этот путь может быть запущен в ответ на повреждение ДНК, активацию онкогенов, избыток Ca2+ в клетке, отсутствие факторов роста (пептидный или стероидный гормон, стимулирующий рост и дифференцировку клетки), неправильно сложенные белки.

Активация пути ведет к повышению проницаемости наружной мембраны митохондрий. Из-за этого в цитоплазму выходят цитохром c и другие митохондриальные белки, которые инициируют апоптоз.

В норме они находятся в межмембранном пространстве этих органелл. Ключевой белок во внутреннем пути — цитохром с (компонент электрон-транспортной цепи). Выйдя в цитоплазму, он приобретает новые функции и присоединяется к фактору апоптотической протеазы 1 (apoptotic protease activating factor-1 — Apaf1).

Так образуется колесоподобная структура — апоптосома. Апоптосома активирует инициаторные каспазы-9, в свою очередь активирующие эффекторные каспазы, что дает начало апоптозу.
Рисунок 3 | Внутренний путь апоптоза

Апоптоз-регулируемый процесс

За внутренний путь апоптоза отвечают белки семейства Bcl2. Они контролируют выход проапоптотических белков из митохондрий (например, цитохром c). Название дано в честь гена белка Bcl2, который сверхэкспрессирован в некоторых лимфомах В-клеток (B cell lymphoma). В это семейство входят более 20 белков, которые могут быть разделены в три группы на основании их функций и количестве гомологичных доменов (Bcl2 Homology).

Первая группа — проапоптотические белки, которые увеличивают выход митохондриальных белков и запуск апоптоза.

Вторая группа — антиапоптотические белки, которые подавляют апоптоз, блокируя выход митохондриальных белков. Оба вида могут связываться друг с другом в различных комбинациях, подавляя свои функции. Баланс между активностью двух видов белков определяет, выживет ли клетка или погибнет по внутреннему пути апоптоза.

Антиапоптотическая группа представлена белками Bcl2 и BclXL, которые имеют четыре BH домена (BH1-4). Эти белки находятся на наружной мембране митохондрий и сохраняют ее непроницаемость. Таким образом это предотвращает утечку цитохрома c и других белков.

Проапоптотические белки — Bax и Bak. У них есть три BH домена (BH1-3). После своей активации Bax и Bak повышают проницаемость внешней мембраны митохондрий. Возможно, это происходит путем образования канала, что позволяет белкам выходить из межмембранного пространства в цитоплазму. Bak даже в отсуствие апоптотического сигнала связан с наружной мембраной митохондрий, а Bах локализован в цитозоле и транспортируется к митохондрии только после апоптотического сигнала.

Третья группа содержит (тоже проапототические) белки Bad, Bim, Bid, Puma и Noxa. Они имеют один BH домен (BH3), третий из четырех доменов BH, поэтому и получили название BH3 only proteins. Белки BH3-only играют ключевую роль в регулировании и стимулировании апоптоза и, таким образом, служат привлекательной целью терапевтического вмешательства. Следует отметить, что BH3 домен является единственным общим доменом для всех членов семейства Bcl2. Он опосредует взаимодействия между проапоптотическими и антиапоптотические белками.

Как происходит регуляция?

Факторы роста и другие сигналы выживания стимулируют выработку антиапоптотических белков. Они ингибируют апоптоз путем связывания проапоптотических белков на митохондриальной мембране. BH3-only белки, напротив, нейтрализуют активность антиапоптотических белков, таким образом способствуя собиранию проапоптотических белков Вах и Вак на поверхности митохондрии. Это приводит к выходу митохондриальных белков наружу.

Знаменитый белок р53 часто называют «стражем генома», потому что он в ответ на повреждение ДНК запускает апоптоз. Если повреждения не могут быть исправлены, белок р53 (опухолевый супрессор) накапливается в клетке и активирует транскрипцию генов, кодирующих BH3-only белки Puma и Noxa. Также p53 действует на митохондрии и взаимодействует с антиапоптотическим белком Bcl-xL.

Белок ВН3-only Bid связует оба пути апоптоза. В норме он неактивен. Но при активации внешнего пути каспаза-8 переводит белок Bid в активную форму. Bid перемещается к наружной мембране митохондрии и ингибирует антиапоптотические белки, тем самым увеличивая сигнал смерти.

Рисунок 4 | Схема регуляции внутреннего пути апоптоза

Другие способы регуляции

Клетка использует надежные механизмы от ненужной активации каспаз. Например, защитником служит семейство белков-ингибиторов апоптоза (inhibitors of apoptosis — IAPs). У человека они представлены следующими видами: cIAP1 (BIRC2), cIAP2 (BIRC3), X-связанный IAP (XIAP) и др.

Одни из этих белков связывают и ингибируют активированные каспазы. Другие — помечают каспазы для разрушения протеосомами. Функция ингибиторов заключается в установлении порога, который каспазы должны преодолеть для активации апоптоза. Активность IAP может быть подавлена белками из межмембранного пространства митохондрий, такими как Omi/HtrA2 и Smac/DIABLO, высвобождающимися во время апоптоза.

И еще о факторах выживания

Межклеточные сигналы регулируют деятельность клеток, в том числе и апоптоз. Необходим контроль, гарантирующий, что отдельные клетки ведут себя во благо всего организма, в противном случае их нужно удалить. Например, сигнальные белки, такие как Fas-лиганд, активируют рецепторы смерти и тем самым инициируют внешний путь апоптоза. Напротив, существуют факторы выживания — внеклеточные сигнальные молекулы, которые ингибируют апоптоз. Некоторые клетки требуют непрерывной сигнализации от других клеток, чтобы выживать. И это, по-видимому, помогает обеспечить жизнь только нужных клеток.

Рисунок 5 | (А) — Некоторые факторы выживания подавляют апоптоз, стимулируя выработку антиапоптотических белков, таких как Bcl2 или BclXL. (В) — Другие факторы активируют серин/треонин-протеинкиназу Akt (протеинкиназа B), которая путем фосфорилирования аминокислот серина и треонина приводит к инактивации проапоптотического белка Bad (он способствует апоптозу, так как он связывает и ингибирует Bcl2). После фосфорилирования Bad высвобождает Bcl2, который подавляет апоптоз. Активация этой протеинкиназы связана со многими злокачественными новообразованиями

Гибель нервной ткани

Нервные клетки вырабатываются избыточно в развивающейся нервной системе, а затем конкурируют за ограниченное количество факторов выживания. Эти факторы секретируются клетками-мишенями, к которым подходят нейроны. Нервные клетки, получающие достаточно сигналов выживания, живут, в то время как другие, не получающие нужного количества, умирают. Таким образом, число выживших нейронов соответствует количеству клеток-мишеней, с которыми они соединяются.
Жизнь и смерть у нервных клеток.

Рисунок 6 | Роль факторов выживания в гибели лишних нервных клеток

Каскады жизни и смерти

Каскад жизни

Факторы выживания для нейронов называются нейротрофическими факторами. Активация рецепторов нейротрофических факторов на пресинаптической мембране аксона приводит к увеличению факторов транскрипции, которые отвечают за образование антиапоптотических белков (Bcl-2, Bcl-xL), супероксиддисмутазы (подавляет повреждение клетки в результате окисления) и белков-ингибиторов апоптоза (IAP).

Каскад смерти

Апоптоз наблюдается в ходе процесса, который называется эксайтотоксичность. Этот процесс происходит при чрезмерной активации глутаматных рецепторов, в результате чего повышается приток Ca2+ в постсинаптические области дендритов. Са2+, попадая в цитоплазму через ионные каналы на плазматической мембране и на эндоплазматическом ретикулуме, индуцирует апоптотический каскад, который активирует проапоптотическое белки Bax, Bad и p53. Эти белки действуют на митохондрии так, что повышается ее проницаемость, а в цитоплазму выделяется цитохром С. Это приводит к апоптозу.

Рисунок 7 | Каскады жизни и смерти

Как убрать апоптотическую клетку?

Апоптоз — очень аккуратный процесс клеточной смерти. Апоптотическая клетка и ее фрагменты не разрываются и не выделяют свое содержимое, а вместо этого остаются нетронутыми. Они съедаются без следов, поэтому воспалительного ответа нет. Апоптотическую клетку поглощают фагоциты. Процесс поглощения зависит от наличия химических изменений на поверхности мембраны клетки.

К таким изменениям относится наличие фосфатидилсерина, который служит сигналом для фагоцитарных клеток. Этот фосфолипид обычно расположен только на внутренней поверхности плазматической мембраны, а при апоптозе переворачивается на наружную поверхность. Макрофаги не фагоцитируют здоровые клетки, хотя у здоровых клеток на их поверхности есть некоторый фосфатидилсерин.

Но здоровые клетки имеют еще и такие сигнальные белки на их поверхности, которые блокируют фагоцитоз. Таким образом, помимо наличия сигналов, таких как фосфатидилсерин, которые стимулируют фагоцитоз, апоптотические клетки должны инактивировать сигналы типа «не ешь меня», блокирующие фагоцитоз.

Рисунок 8 | Фагоциты удаляют апоптотическую клетку или ее части

Уклонение от апоптоза

Нарушение механизма клеточной смерти ключевой признак онкологического заболевания. Опухолевые клетки могут использовать различные механизмы для подавления апоптоза и приобретения устойчивости к апоптотическим агентам. Например, может наблюдается повышенная экспрессия антиапоптотических белков (Bcl-2) или мутации в генах проапоптотических белков (Вах).

Дефекты апоптоза могут позволить эпителиальным клеткам выживать во взвешенном состоянии без прикрепления к внеклеточному матриксу, что способствует метастазированию. Они также способствуют устойчивости перед цитолитическими Т-клетками и натуральными киллерами (NK), атакующими опухоли. Эти дефекты играют важную роль в устойчивости к лечению химиотерапией и лучевой терапией, увеличивая порог смерти клеток и требуя более высоких доз агентов, убивающих опухоль.

Успешное удаление раковых клеток с помощью нехирургических средств в конечном итоге достигается путем индукции апоптоза. Все цитотоксические противораковые средства, которые в настоящее время используются в клинических целях, вызывают апоптотическую гибель злокачественных клеток.

Рисунок 9 | Схематическое представление различных способов, из-за которых апоптотические пути могут быть нарушены

Терапия онкологических заболеваний и апоптоз

Ингибирование апоптоза лежит в основе развития всех опухолей. А значит, наиболее очевидной стратегией лечения является нацеленность на причины, которые подавляют гибель клеток. Для преодоления антиапоптотического эффекта белков Bcl-2 и Bcl-xL в опухолевых заболеваниях существует три стратегии:

  • прекращение транскрипции их генов,
  • разрушение мРНК с помощью антисмысловых олигонуклеотидов,
  • атака мелкомолекулярными препаратами.

Стратегия первая

Некоторые стероиды и ретиноиды активируют транскрипционные факторы, которые регулируют синтез мРНК. Они представляют собой потенциально «лекарственные» модуляторы транскрипции гена Bcl-2 и Bcl-xL. Например, экспрессия Bcl-2 зависит от эстрогена в молочной железе.

Следовательно, антиэстрогены, такие как тамоксифен, ингибируют экспрессию Bcl-2 в клеточных линиях рака молочной железы, способствуя развитию чувствительности к цитотоксическим противоопухолевым препаратам, таким как доксорубицин.

Стратегия вторая

Антисмысловые олигонуклеотиды — цель на мРНК. Антисмысловые олигонуклеотиды (Antisense oligonucleotides) представляют собой короткие последовательности одноцепочечной ДНК, которые могут связываться с мРНК, что сопровождается ее разрушением.

Один из перспективных препаратов — облимерсен натрия. Он представляет собой натриевую соль фосфоротиоатного антисмыслового олигонуклеотида. Препарат ингибирует мРНК гена Bcl-2. Он был успешно протестирован в сочетании с другими противораковыми агентами при различных типах рака, таких как множественная миелома, мелкоклеточный рак легких, меланома и неходжкинская лимфома.

Модификация искусственных нуклеотидов делает нуклеотидную цепь устойчивой к расщеплению нуклеазами и повышают период полувыведения в организме. В данном случае использовалось добавление фосфоротиоата (PS) в основную цепь (замена одного из кислородных остатков фосфатной цепи на серу)
Стратегия третья

BH3 миметики — это вещества, связывающиеся с рецепторами белков, на которые действуют сами BH3. Они необходимы для активации апоптоза. Эти белки нейтрализуют антиапоптотическое белки Bcl2 или активируют Bak и Bax. Разработаны BH3-имитирующие молекулы, выполняющие те же функции, что и BH3 белки.

Например, вещество ABT-737, которое ингибирует Bcl2-белки. BH3-белки, взаимодействуют с длинной гидрофобной канавкой в белке Bcl2, тем самым инактивируя последние. Препарат ABT-737 был спроектирован с помощью кристаллической структуры этой канавки.

Р53 в качестве лекарственной цели

Ген белка р53 отключен из-за мутаций примерно у 50% всех злокачественных опухолей. Повышение производства белка р53 в клетке может быть методом противораковой терапии. В нормальных клетках белок p53 обычно поддерживается на низком уровне, поскольку он подвержен ингибированию белком MDM2. В ответ на повреждения ДНК p53 видоизменяется.

Это позволяет ему избежать контроля MDM2 и начать накапливаться в клетке. Содержание гена MDM2 увеличено в некоторых типах опухолей, поэтому активного белка р53 становится меньше. Взаимодействие между p53 и MDM2 является мишенью в противораковой терапии. С этой целью были разработаны препараты, которые блокируют белок-белковые взаимодействия. Среди них Nutlin-3, ингибирующий взаимодействие p53/MDM2.

Большая часть того, что известно об апоптозе, стала понятна только недавно. Основная идея разработки терапевтических препаратов для лечения рака основана на том факте, что поврежденные клетки обычно встают на путь апоптоза, поддерживая нормальное для ткани количество клеток. Однако это явление сильно нарушается в раковых клетках. Обнаружение ключевых участников апоптоза и их взаимодействие с другими значимыми участниками создает условия для поиска новых методов терапии рака.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *